|
This article has multiple issues. Please help improve it or discuss these issues on the talk page.
|
A typical modern front-loading washing machine
A washing machine (laundry machine, clothes washer, or washer) is a machine designed to wash laundry, such as clothing, towels, and sheets. The term is mostly applied only to machines that use water as the primary cleaning solution, as opposed to dry cleaning (which uses alternative cleaning fluids, and is performed by specialist businesses) or ultrasonic cleaners. Washing entails immersing, dipping, rubbing, or scrubbing in water or other liquids, usually accompanied by soap, detergent, or bleach.
Laundering by hand involves beating and scrubbing dirty textiles. Clothes washer technology developed as a way to reduce the manual labor spent, providing an open basin or sealed container with paddles or fingers to automatically agitate the clothing. The earliest machines were hand-operated and constructed from wood, while later machines made of metal permitted a fire to burn below the washtub, keeping the water warm throughout the day's washing (the entire process often occupied an entire day of hard work, plus drying and ironing).The earliest special-purpose washing device was the scrub board, invented in 1797.[1]
As electricity was not commonly available until at least 1930, some early washing machines were operated by a low-speed single-cylinder hit and miss gasoline engine. By the mid-1850s, steam-driven commercial laundry machinery was on sale in the US and UK.[2] Technological advances in machinery for commercial and institutional washers proceeded faster than domestic washer design for several decades, especially in the UK. In the US there was more emphasis on developing machines for washing at home, though machines for commercial laundry services were widely used in the late 19th and early 20th centuries.[3] The rotary washing washing machine was patented by Hamilton Smith in 1858.[1]
Because water often had to be hand carried, heated on a fire for washing, then poured into the tub, the warm soapy water was precious and would be reused, first to wash the least soiled clothing, then to wash progressively dirtier laundry. Removal of soap and water from the clothing after washing was originally a separate process. After rinsing, the soaking wet clothing would be formed into a roll and twisted by hand to extract water.
To help reduce this labor, the wringer/mangle machine was developed, which used two rollers under spring tension to squeeze water out of clothing and household linen. Each laundry item would be fed through the wringer separately. The first wringers were hand-cranked, but were eventually included as a powered attachment above the washer tub. The wringer would be swung over the wash tub so that extracted wash water would fall back into the tub to be reused for the next load. As the term "mangle" implies, these early machines were quite dangerous, especially if powered and not hand-driven. A user's fingers, hand, arm, or hair could become entangled in the laundry being squeezed, resulting in horrific injuries. Safer mechanisms were developed over time, and the more hazardous designs were eventually outlawed.[citation needed]
The modern process of water removal by spinning did not come into use until electric motors were developed. Spinning requires a constant high-speed power source, and was originally done in a separate device known as an "extractor". A load of washed clothing would be transferred from the wash tub to the extractor basket, and the water spun out in a separate operation.[4] These early extractors were often dangerous to use, since unevenly distributed loads would cause the machine to shake violently. Many efforts were been made to counteract the shaking of unstable loads, such as mounting the spinning basket on a free-floating shock-absorbing frame to absorb minor imbalances, and a bump switch to detect severe movement and stop the machine so that the load could be manually redistributed.
What is now referred to as an automatic washer was at one time referred to as a "washer/extractor", which combines the features of these two devices into a single machine, plus the ability to fill and drain water by itself. It is possible to take this a step further, and to also merge the automatic washing machine and clothes dryer into a single device, called a combo washer dryer.
19th-century Metropolitan washing machine
The first English patent under the category of Washing and Wringing Machines was issued in 1691.[5] A drawing of an early washing machine appeared in the January 1752 issue of "The Gentlemen's Magazine", a British publication. Jacob Christian Schäffer's washing machine design was published 1767 in Germany.[6] In 1782, Henry Sidgier was issued a British patent for a rotating drum washer, and in the 1790s Edward Beetham sold numerous "patent washing mills" in England.[7] In 1862, a patented "compound rotary washing machine, with rollers for wringing or mangling" by Richard Lansdale of Pendleton, Manchester, was shown at the 1862 London Exhibition.[8]
The first United States Patent titled "Clothes Washing" was granted to Nathaniel Briggs of New Hampshire in 1797. Because of the Patent Office fire in 1836, no description of the device survives. A device that combined a washing machine with a wringer mechanism did not appear until 1843, when Canadian John E. Turnbull of Saint John, New Brunswick patented a "Clothes Washer With Wringer Rolls."[9]
Electric washing machines were advertised and discussed in newspapers as early as 1904.[10] Alva J. Fisher has been incorrectly credited with the invention of the electric washer. The US Patent Office shows at least one patent issued before Mr. Fisher's US patent number 966677 (e.g. Woodrow's US patent number 921195). The "inventor" of the electric washing machine remains unknown.
US electric washing machine sales reached 913,000 units in 1928. However, high unemployment rates in the Depression years reduced sales; by 1932 the number of units shipped was down to about 600,000.
The first laundromat opened in Fort Worth, Texas in 1934.[11][dubious – discuss] It was run by Andrew Clein. Patrons used coin-in-the-slot facilities to rent washing machines. The term "laundromat" can be found in newspapers as early as 1884 and they were widespread during the Depression. It is almost impossible to determine who had the first laundromat.[contradiction] England established public wash rooms for laundry along with bath houses throughout the 19th century.[12]
Washer design improved during the 1930s. The mechanism was now enclosed within a cabinet, and more attention was paid to electrical and mechanical safety. Spin dryers were introduced to replace the dangerous power mangle/wringers of the day.
By 1940, 60% of the 25,000,000 wired homes in the United States had an electric washing machine. Many of these machines featured a power wringer, although built-in spin dryers were not uncommon.[citation needed]
Bendix Corporation introduced the first automatic washing machine in 1937,[13][not in citation given] having applied for a patent in the same year.[14] In appearance and mechanical detail, this first machine is not unlike the front loading automatic washers produced today. Although it included many of the today's basic features, the machine lacked any drum suspension and therefore had to be anchored to the floor to prevent "walking".
Many of the early automatic machines had coin-in-the-slot facilities and were installed in the basement laundry rooms of apartment houses.
Early automatic washing machines were usually connected to a water supply via temporary slip-on connectors to sink taps. Later, permanent connections to both the hot and cold water supplies became the norm, as dedicated laundry water hookups became common. Most modern front-loading European machines now only have a cold water connection (called "cold fill") and rely completely on internal electric heaters to raise the water temperature.
A classic Bendix washing machine
After the attack on Pearl Harbor, US domestic washer production had to be suspended for the duration of World War II. However, numerous US appliance manufacturers were given permission to undertake the research and development of washers during the war years. Many took the opportunity to develop automatic machines, realizing that these represented the future for the industry.
An improved front-loading automatic model, the Bendix Deluxe (which retailed at $249.50), was introduced in 1947.[15]
General Electric also introduced its first top loading automatic model in 1947. This machine had many of the features that are incorporated into modern machines.
A large number of US manufacturers introduced competing automatic machines (mainly of the top-loading type) in the late 1940s and early 1950s. Several manufacturers produced semi-automatic machines, requiring the user to intervene at one or two points in the wash cycle. A common semi-automatic type (available from Hoover in the UK until at least the 1970s) included two tubs: one with an agitator or impeller for washing and another, smaller tub for water extraction or centrifugal rinsing.
One early form of automatic washing machine manufactured by Hoover used cartridges to program different wash cycles. This system, called the "Keymatic", used plastic cartridges with key-like slots and ridges around the edges. The cartridge was inserted into a slot on the machine and a mechanical reader operated the machine accordingly. The system did not commercially succeed because it offered no real advantage over the more conventional program dial, and the cartridges were prone to getting lost. In hindsight it can be seen as a marketing gimmick rather than offering any really useful functionality.
Since their introduction, automatic washing machines have relied on electromechanical timers to sequence the washing and extraction process. Electromechanical timers consist of a series of cams on a common shaft driven by a small electric motor via a reduction gearbox. At the appropriate time in the wash cycle, each cam actuates a switch to engage or disengage a particular part of the machinery (for example, the drain pump motor).
On the early electromechanical timers, the motor ran at a constant speed throughout the wash cycle, although it was possible for the user to truncate parts of the program by manually advancing the control dial. However, by the 1950s demand for greater flexibility in the wash cycle led to the introduction of more sophisticated electrical timers to supplement the electromechanical timer. These newer timers enabled greater variation in functions such as the wash time. With this arrangement, the electric timer motor is periodically switched off to permit the clothing to soak, and is only re-energized just prior to a micro-switch being engaged or disengaged for the next stage of the process. Fully electronic timers did not become widespread until decades later.
Despite the high cost of automatic washers, manufacturers had difficulty in meeting the demand. Although there were material shortages during the Korean War, by 1953 automatic washing machine sales in the US exceeded those of wringer-type electric machines.
In the UK and in most of Europe, electric washing machines did not become popular until the 1950s. This was largely because of the economic impact of World War II on the consumer market, which did not properly recover until the late 1950s. The early electric washers were single-tub, wringer-type machines, as fully automatic washing machines were extremely expensive. During the 1960s, twin tub machines briefly became very popular, helped by the low price of the Rolls Razor washers. Some machines had the ability to pump used wash water into a separate tub for temporary storage, and to later pump it back for re-use. This was done not to save water or soap, but because heated water was expensive and time-consuming to produce. Automatic washing machines did not become dominant in the UK until well into the 1970s and by then were almost exclusively of the front-loader design.
In early automatic washing machines, any changes in impeller/drum speed were achieved by mechanical means or by a rheostat on the motor power supply. However, since the 1970s electronic control of motor speed has become a common feature on the more expensive models.
A see-through machine at a 2010 trade fair shows off its internal components
In the early 1990s, upmarket machines incorporated microcontrollers for the timing process. These proved reliable and cost-effective, so many cheaper machines now incorporate microcontrollers rather than electromechanical timers. Washing machines are a classic application for fuzzy logic[why?]. Miele, from West Germany, was a top of the line front-load washer, and was introduced in Kananaskis, Alberta by Glenn Isbister, starting a revolution in laundry in Canada.[when?]
In 1994, Staber Industries released the System 2000 washing machine, which is the only top-loading, horizontal-axis washer to be manufactured in the United States. The hexagonal tub spins like a front-loading machine, only using about third of the water as conventional top-loaders. This factor has led to an Energy Star rating for its high efficiency.
In 1998, New Zealand based company Fisher & Paykel introduced its SmartDrive washing machine line in the US. This washing machine uses a computer-controlled system to determine certain factors such as load size and automatically adjusts the wash cycle to match. It also used a mixed system of washing, first with the "Eco-Active" wash, using a low level of recirculated water being sprayed on the load followed by a more traditional style wash. Other variations include the Intuitive Eco, which can sense the water level and type of fabric in the wash load, and the agitatorless AquaSmart line. The SmartDrive also included direct drive brushless DC electric motor, which simplified the bowl and agitator drive by doing away with the need for a gearbox system.
In 2001, Whirlpool Corporation introduced the Calypso, the first vertical-axis high efficiency washing machine to be top-loading. A washplate in the bottom of the tub nutated (a special wobbling motion) to bounce, shake, and toss the laundry around. Simultaneously, water containing detergent was sprayed on to the laundry. The machine proved to be good at cleaning, but gained a bad reputation due to frequent breakdowns and destruction of laundry. The washer was recalled with a class-action lawsuit[citation needed]] and pulled off the market.
In 2003, Maytag introduced their top-loading Neptune washer. Instead of an agitator, the machine had two washplates, perpendicular to each other and at a 45 degree angle from the bottom of the tub. The machine would fill with only a small amount of water and the two washplates would tumble the load within it, mimicking the action of a front-loading washer in a vertical axis design.[further explanation needed]
In the early first decade of the 21st century,[when?] the British inventor James Dyson launched the ContraRotator, a type of washing machine with two cylinders rotating in opposite directions. It was claimed that this design reduces the wash time and produces cleaner results.[citation needed] However, this machine is no longer in production.[why?]
In 2007, Sanyo introduced the first drum type washing machine with "Air Wash" function.[16] This washing machine uses only 50 liters of water in the recycle mode.
In 2008, the University of Leeds created a concept washing machine that uses only a cup (less than 300ml) of water to carry out a full wash. The machine leaves clothes virtually dry, and uses less than 2 per cent of the water and energy otherwise used by a conventional machine, but requires 20 kg of re-usable plastic chips in each load. As such, it could save billions of liters of water each year.[17]
Features available in most modern consumer washing machines:
- Predefined programs for different laundry types
- Variable temperatures, including cold wash
- Rotation speed settings
- Delayed execution: a timer to delay the start of the laundry cycle
Additionally some of the modern machines feature:
- Child lock
- Time remaining indication
- Steam
Future functionalities will include energy consumption prognosis before starting the program, and electricity tariff induced delayed start of the machines.[18] Integration into home local (wireless) networks will allow to monitor energy demand via different clients like computers or smart phones.
Modern washing machines are available in two configurations: top loading and front loading. Since 2000, there has been a gradual increase in the proportion of front loaders sold in the US. This is in part because of increased awareness of this alternative design, and increased offerings of front loading designs in the US.
Market |
Top Loading Washer |
Front Loading Washer |
European Market Share |
10%** |
90% |
US Market Share |
65% |
35% |
Low-cost top loading, vertical axis machines in laundromat (California)
In a top-loading washer, water circulates primarily along the poloidal axis during the wash cycle, as indicated by the red arrow in this illustration of a
torus.
The top-loading or vertical-axis clothes washer is most popular in Australia[citation needed], New Zealand, Canada, the United States, and Latin America.[citation needed] Simplified, very-low-cost versions are made for markets in Asia, Africa, and other less-developed parts of the world.
This design places the clothes in a vertically mounted perforated basket that is contained within a water-retaining tub, with a finned water-pumping agitator in the center of the bottom of the basket. Clothes are loaded through the top of the machine, which is usually but not always covered with a hinged door.
During the wash cycle, the outer tub is filled with water sufficient to fully immerse and suspend the clothing freely in the basket. The movement of the agitator pushes water outward between the paddles towards the edge of the tub. The water then moves outward, up the sides of the basket, towards the center, and then down towards the agitator to repeat the process, in a circulation pattern similar to the shape of a torus. The agitator direction is periodically reversed, because continuous motion in one direction would just lead to the water spinning around the basket with the agitator rather than the water being pumped in the torus-shaped motion. Some washers supplement the water-pumping action of the agitator with a large rotating screw on the shaft above the agitator, to help move water downwards in the center of the basket.
In most top-loading washers, if the motor spins in one direction, the gearbox drives the agitator; if the motor spins the other way, the gearbox locks the agitator and spins the basket and agitator together. Similarly if the pump motor rotates one way it recirculates the sudsy water; in the other direction it pumps water from the machine during the spin cycle. Because they usually incorporate a gearbox, clutch, crank, etc., top-loading washers are mechanically more complex than front loading machines. An example of the complex mechanisms once used to produce different motions from a single motor is the so-called "wig wag" mechanism, which was used for decades until modern controls rendered it obsolete. The electromechanical components in conventional top-load washers have largely reached maturity, and there is a trend towards simpler mechanical components but greater complexity in electronic controllers.
The top-loader's spin cycle between washing and rinsing allows an extremely simple fabric softener dispenser, which operates passively through centrifugal force and gravity. The same objective must be accomplished by a solenoid valve on a front loader. Another advantage to the top loading design is the reliance on gravity to contain the water, rather than potentially trouble-prone or short-lived front door seals. Top loaders may require less periodic maintenance since there is no need to clean a door seal or bellows, although a plastic tub may still require a periodic "maintenance wash" cycle (described below).
As with front-loading washers, clothing should not be packed tightly into a top-loading washer. Although wet cloth usually fits into a smaller space than dry cloth, a dense wad of cloth can restrict water circulation, resulting in poor soap distribution and incomplete rinsing. Extremely overloaded top-loading washers can either jam the motion of the agitator, overloading or damaging the motor or gearbox, or tearing fabrics. Extreme overloading can also push fabrics into the small gap between the underside of the agitator and the bottom of the wash basket, resulting in fabrics wrapped around the agitator shaft, possibly requiring agitator removal to unjam.
Arctic BE1200A+ is a front loading budget model sold in 2008 with 6 kg load, LCD indicator, 1200 RPM
The front-loading or horizontal-axis clothes washer is the dominant design in Europe, the Middle East, Asia, Africa, and much of the rest of the world. In the US and elsewhere, most "high-end" washing machines are of this type. In addition, most commercial and industrial clothes washers around the world are of the horizontal-axis design.
This layout mounts the inner basket and outer tub horizontally, and loading is through a door at the front of the machine. The door often but not always contains a transparent window. Agitation is supplied by the back-and-forth rotation of the cylinder and by gravity. The clothes are lifted up by paddles on the inside wall of the drum and then dropped. This motion flexes the weave of the fabric and forces water and detergent solution through the clothes load. Because the wash action does not require the clothing be freely suspended in water, only enough water is needed to moisten the fabric. Because less water is required, front-loaders typically use less soap, and the repeated dropping and folding action of the tumbling can easily produce large amounts of foam or suds.
Front-loaders control water usage through the surface tension of water, and the capillary wicking action this creates in the fabric weave. A front-loader washer always fills to the same low water level, but a large pile of dry clothing standing in water will soak up the moisture, causing the water level to drop. The washer then refills to maintain the original water level. Because it takes time for this water absorption to occur with a motionless pile of fabric, nearly all front-loaders begin the washing process by slowly tumbling the clothing under the stream of water entering and filling the drum, to rapidly saturate the clothes with water.
Front-loading washers are mechanically simple compared to top-loaders, with the main motor normally being connected to the drum via a grooved pulley belt and large pulley wheel, without the need for a gearbox, clutch or crank. But front-load washers suffer from their own technical problems, due to the drum lying sideways. For example, a top loading washer keeps water inside the tub merely through the force of gravity pulling down on the water, while a front-loader must tightly seal the door shut with a gasket to prevent water dripping onto the floor during the wash cycle. This access door is locked shut during the entire wash cycle, since opening the door with the machine in use could result in water gushing out onto the floor. For front-loaders without viewing windows on the door, it is possible to accidentally pinch fabric between the door and the drum, resulting in tearing and damage to the pinched clothing during tumbling and spinning.
Nearly all front-loader washers for the consumer market must also use a folded flexible bellows assembly around the door opening, to keep clothing contained inside the basket during the tumbling wash cycle.[citation needed] If this bellows assembly were not used, small articles of clothing such as socks could slip out of the wash basket near the door, and fall down the narrow slot between the outer tub and basket, plugging the drain and possibly jamming rotation of the inner basket. Retrieving lost items from between the outer tub and inner basket can require complete disassembly of the front of the washer and pulling out the entire inner wash basket. Commercial and industrial front-loaders used by businesses (described below) usually do not use the bellows, and instead require all small objects to be placed in a mesh bag to prevent loss near the basket opening.
The bellows assembly around the door is a potential source of problems for the consumer front-loader. The bellows has a large number of flexible folds to permit the tub to move separately from the door during the high speed extraction cycle. On many machines, these folds can collect lint, dirt, and moisture, resulting in mold and mildew growth, and a foul odor. Some front-loading washer operating instructions say the bellows should be wiped down monthly with a strong bleach solution, while others offer a special "freshening" cycle where the machine is run empty with a strong dosing of bleach. In the past, suggested remedies have included adding vinegar to the laundry detergent, running an empty cycle with bleach every few weeks, wiping the door gasket with a diluted bleach solution every other week, and leaving the front-loading washer door ajar between loads.
Recent[when?] studies of consumer reviews posted across the internet show a trend for certain US front-loading washers to have bearing failure problems, usually within the first 6 years. Typical symptoms are louder noises while spin-rinsing, or soiled clothes (from bearing grease leaking into the inner tub) shortly before complete failure. Repair costs are close to replacement cost, causing the consumer to replace rather than repair.[citation needed]
Compared to top-loading washers, clothing can be packed more tightly in a front loader, up to the full drum volume if using a cottons wash cycle. This is because wet cloth usually fits into a smaller space than dry cloth, and front loaders are able to self-regulate the water needed to achieve correct washing and rinsing. Extreme overloading of front-loading washers pushes fabrics towards the small gap between the loading door and the front of the wash basket, potentially resulting in fabrics lost between the basket and outer tub, and in severe cases, tearing of clothing and jamming the motion of the basket.
European top loader with horizontal axis rotating drum (2008)
There are many variations of these two general themes. Top-loading machines in Asia use impellers instead of agitators. Impellers are similar to agitators except that they do not have the center post extending up in the middle of the wash tub basket.
There is also a variant of the horizontal axis design that is loaded from the top, through a small door in the circumference of the drum. These machines usually have a shorter cylindrical drum and are therefore smaller, but offer the washing efficiency of a front-loader while eliminating the problems of the flexible bellows. This kind of washing machine is sold and popular in Europe, especially in small households, because it offers the same drum system as front-loaders, just with a smaller footprint.
There are also combo washer dryer machines that combine washing cycles and a full drying cycle in the same drum, eliminating the need to transfer wet clothes from a washer to a dryer machine. In principle, these machines are convenient for overnight cleaning (the combined cycle is considerably longer), but the effective capacity for cleaning larger batches of laundry is drastically reduced. The drying process tends to use much more energy than using two separate devices, because a combo washer dryer not only must dry the clothing, but also needs to dry out the wash chamber itself. These machines are used more in Europe and the UK, because they can be fitted into small spaces, and many can be operated without dedicated utility connections.
Front loaders and top loaders can be compared on a number of aspects:
- Efficient Cleaning: Front loaders usually use less energy, water, and detergent, and can clean more effectively than many of the best top loaders.[19] "High Efficiency" washers use 20% to 60% of the detergent, water and energy of "standard" washers. They usually take somewhat longer (20-110 minutes) to wash a load, but are often computer controlled with additional sensors, to adapt the wash cycle to the needs of each load. As this technology improves, the human interface will also improve, to make it easier to understand and control the many different cleaning options.[citation needed]
- Water Usage: Front loaders generally use less water than top-loading residential clothes washers. Estimates are that front loaders use anywhere from about one third[20] to one half[21] as much as top loaders.
- Spin-dry Effectiveness: Front loaders offer much higher spin drying speeds of up to 2000 RPM, although those machines marketed to consumers tend to be in the 1100 or 1200 RPM range, but still considerably higher than the 650 RPM that are typically found in top loaders. Higher spin speeds remove much more residual water, making it possible to dry clothes very quickly by hanging them on washing lines or drying racks. More efficient water removal can substantially reduce the length of time and energy usage in a clothes dryer machine.[citation needed]
- Cycle Length: Top loaders have tended to have shorter cycle times, in part because their design has traditionally emphasized simplicity and speed of operation more than resource conservation.
- Wear and Abrasion: Top loaders require an agitator or impeller mechanism to force enough water through clothes to clean them effectively, and this action greatly increases mechanical wear and tear on laundry textiles. Front loaders rely on paddles to repeatedly pick up and drop clothes into water for cleaning, and this gentler action causes less wear. The amount of clothes wear can be crudely gauged by the amount of accumulation in a clothes dryer lint filter, since the lint largely consists of stray fibers detached from textiles during washing and drying.
- Difficult Items: Top loaders may have trouble cleaning large items, such as sleeping bags or pillows, which tend to float on top of the water rather than circulate. In addition, vigorous top loader agitator motions may damage delicate fabrics. Front loaders use the same gentle tumbling motion as most clothes dryers, and any washable items suitable for the latter machine should be washable in the former one.
- Acoustic Noise: Front loaders tend to operate more quietly than top loaders, because the door seal helps contain noise, and because there is less of a tendency to imbalance. Top loaders usually need a mechanical transmission, which can generate more noise than the direct drive found in most front loaders.
- Compactness: Front loading machines may be installed underneath counter height work surfaces. A front loading washing machine, in a fully fitted kitchen, may even be disguised as an ordinary base cabinet unit. These models can also be convenient in homes with limited floor area, since the clothes dryer may be installed directly above the washer ("stacked" configuration).
- Water Leakage: Top loading machines are less prone to leakage, because simple gravity can reliably keep water from spilling out the loading door on top. Front loading machines require a flexible seal or gasket on the front door, and the front door must be locked during operation to prevent opening, lest large amounts of water spill out. This seal may leak or require eventual replacement. However, many current front-loaders use so little water that they can be stopped mid-cycle for addition or removal of laundry, while keeping the water level in the horizontal tub below the door level. Best practice installations of either type of machine will include a floor drain or an overflow catch tray with a drain connection, since neither design is immune to leakage or a solenoid valve getting stuck in the open position.
- Maintenance and Reliability: Top-loading washers are more tolerant of maintenance neglect, and may not need a regular "freshening" cycle to clean door seals and bellows. During the spin cycle, a top-loading tub is free to move about inside the cabinet of the machine, using only a lip around the top of the inner basket and outer tub to keep the spinning water and clothing from spraying out over the edge. Therefore, potentially problematic door sealing and door locking mechanisms are not needed.
- Accessibility and Ergonomics: Front loaders are more convenient for little people and those with paraplegia, as the controls are front-mounted and the horizontal drum eliminates the need for standing or climbing. For people who are sufficiently tall and can stand up, top-loaders may be easier to load and unload, since reaching into the tub does not require stooping. However, this latter issue can be mitigated by installing risers (usually with storage drawers underneath) to raise the front loader door opening closer to the user's level.
- Initial Cost: Front loaders have tended to have a higher initial cost than top loaders, though their lower cost of operation can save money in the long run, especially if energy, detergent, or water are expensive. In addition, manufacturers have tended to include more "high end" features (such as internal water heating, automatic dirt sensors, high speed water extraction) on front loaders, even though some of these features could in principle be implemented on top loaders as well. Although the price differential has been shrinking, especially on low-end models, front loaders still tend to cost somewhat more.
Many front loading machines have internal electrical heating elements to heat the wash water to near boiling, if desired. Chemical cleaning action of the detergent and other laundry chemicals is greatly enhanced by the higher temperatures. Washing machine with internal heaters can use special detergents formulated to release different chemical ingredients at different temperatures. This allows different type of stains and soils to be cleaned from the clothes as the wash water is heated up by the electrical heater. Front loaders need to use low sudsing detergents because the tumbling action of the drum folds air into the clothes load that can cause over-sudsing and overflows. However, due to efficient use of water and detergent, the sudsing issue with front-loaders can be controlled by simply using less detergent, without lessening cleaning action.
A stand-alone spin dryer used for extracting water from laundry
Washing machines perform several rinses after the main wash to remove most of the detergent. Modern washing machines use less water due to environmental concerns; however, this has led to the problem of poor rinsing on many washing machines on the market,[22] which can be a problem to people who are sensitive to detergents. The Allergy UK website suggests re-running the rinse cycle, or rerunning the entire wash cycle without detergent.[23] In response to complaints, many washing machines allow the user to select additional rinse cycles, at the expense of higher water usage and longer cycle time.
Spin cycle speed is important, because higher speeds are much more effective in extracting water, resulting in better cleaning, and much faster drying times (and lower total energy use). Early machines would spin at only 300 RPM and, because of lack of any mechanical suspension, would often shake and vibrate.
Early front-loading machines, especially those manufactured in warm Mediterranean countries such as Italy, had low spin speeds such as 800 RPM or less. Nowadays, a spin speed of 1200 RPM is common, and a peak spin speed as high as 1600 RPM is available on many machines. Some current models in Europe have speeds of 1800 RPM, while a few high-end washing machines have a spin speed of 2000 RPM.
Many modern machines are equipped with an automatic balancer, using a sealed ring of viscous liquid that helps to counteract any imbalances. Today's better machines include internal suspension and shock systems to reduce noises, as well as sensors and software to detect and correct a load that is spinning out of balance.
Front-loading washers can be significantly quieter during spin than top loaders because of the lack of a noisy gearbox to drive the machine's moving parts. However, because they were as not susceptible to gravitational forces and imbalances, some early top-loading machines had spin speeds in excess of 1000 RPM, although some were as low as 360 RPM. Most US top-loading washers have spin speeds less than 1000 RPM.
Separate water extractor machines still are available for niche applications. For example, a small high-speed centrifuge machine may be provided in locker rooms of communal swimming pools to allow wet bathing costumes to be substantially dried to a slightly damp condition after daily use. These small machines do not wash the clothes, which must be laundered elsewhere from time to time.
Most consumer washing machines (excepting premium models), now use a plastic outer shell [24] instead of stainless steel to contain the wash water, and this plastic tub can attract a buildup of residue over time. Some washing machine manufacturers are now advising users to perform a regular maintenance or "freshening" wash which more thoroughly cleans the inside of the washing machine of any mold, bacteria, encrusted detergent, and grunge (unspecified dirt).
A maintenance wash is performed without any laundry, on the hottest wash programme,[25] using any one of the following: white vinegar, 100 grams of citric acid, or a detergent with bleaching properties (it is not advisable to put actual bleach inside the washing machine),[further explanation needed] or a proprietary washing machine cleaner. If using white vinegar, it is important to allow the washing machine to fill for about 30 seconds before adding the vinegar, as the first injection of water goes into the sump.[26]
The EU requires washing machines carry an efficiency label
Capacity and cost are the main considerations when purchasing a washing machine. If intended for use by a small family, a capacity of under 5 kg should be sufficient (thus saving energy and running costs).
Washing machines display an EU Energy Label with grades for energy efficiency, washing performance and spin efficiency. Grades run from A to G (best to worst), providing a simple method for judging running costs and performance. For example a "Triple A" (AAA) rated machine indicates lowest energy consumption, best wash and best water extraction (i.e. spin) performance. This has had the desired effect of driving customers toward more efficient washing machines and away from less efficient ones.
One important factor that is missing from the energy labelling scheme is the washing machine's rinsing performance, which can adversely affect allergy sufferers and people who are sensitive to laundry detergents and chemicals. It is advisable to check an independent consumer report on how well a washing machine can rinse before purchasing, as newer washing machines use a lot less water than older ones.[22]
Top-loading and front-loading clothes washers are covered by a single Federal Standard regulating energy consumption. The Federal Standard effective up until January 1, 2011 included no restriction on water consumption. Therefore, washer manufacturers faced no legal restriction on how much unheated rinse water would be used in washers manufactured before that date.[27]
Many US market clothes washers are now more energy-efficient and water-efficient than required by the mandatory Federal Standard, or even the more stringent Energy Star standard.[28] Manufacturers may be motivated to exceed legally mandated standards by a program of direct-to-manufacturer tax credits.[29] However, excessive energy conservation in the laundering process may lead to less-than-satisfactory cleaning,[30] and excessive water conservation may lead to poor rinsing, causing skin irritation and dermatitis.[22]
The expected life of today's washing machine has decreased by about 10 years compared to 30 years ago.[further explanation needed] The underlying cause is a tendency of US consumers to buy a washing machine at the lowest price, which has caused manufacturers to drastically lower their quality standards. Today's "disposable" machines have shorter lifespans, and only one year warranties are offered. Compared to washing machines of the 1970s that lasted about 15 years, the same quality machine would cost about $2300 today, adjusted for inflation. Europeans generally spend two to three times more money for better built laundry machines.[citation needed]
Commercial washing machines and dryers (at left) in a self-service laundry (Paris, France)
Commercial washing machines in a self-service laundromat (Toronto, Canada)
A commercial washing machine is intended for more frequent and long-term usage than a consumer washing machine. Because function is more important than style, most commercial washers have a sharp-edged square appearance, often with more expensive stainless steel exteriors and interiors to minimize rust, corrosion, and mildew in a constantly moist environment. They are built with large easy-to-open service covers, and the washer mechanisms are internally laid out in a manner that does not require access to the underside of the unit for service. Often commercial washers are installed in long rows with a wide access passageway behind all the machines to allow maintenance without moving the heavy machine. Commercial washers tend to be bulkier and heavier than consumer machines.
Many commercial washers are built for use by the general public, and are installed in publicly accessible laundromats or laundrettes, operated by money accepting devices or card readers. The features of a commercial laundromat washer are more limited than a consumer washer, usually offering just two or three basic wash types plus an option to choose wash cycle temperatures.
The common front-loading commercial washing machine also differs from consumer models in its expulsion of wash and rinse water. While the consumer models pump used washer water out, allowing the waste line to be located above the washer, front loading commercial machines generally use only gravity to expel used water. A drain in the rear, at the bottom of the machine opens at the appointed time during the cycle and water flows out. This creates the need for a drainage trough behind machines, which leads to a filter and drain. The trough is usually part of a cement platform built for the purpose of raising the machines to a convenient height, and can be seen behind washers at most laundromats.
Most traditional laundromat machines have been horizontal-axis front-loading models, because of their lower operating costs (notably lower consumption of expensive hot water). Their somewhat higher initial costs are further offset by better durability, maintainability, and other advantages mentioned earlier. However, some low cost laundromat machines are simply modified versions of consumer vertical-axis top-loading machines, plus provisions for collecting money, and possibly some sturdier components. These machines tend to be installed in smaller apartment buildings and in other situations where lowest possible initial cost is given priority over usage of hot water (which often is not paid for by the specifier of the machines). Many consumers are not aware of the less desirable characteristics of these low-end machines (such as higher wear and tear on clothing, and less-thorough cleaning), and use them simply for the convenience of location in the same building or neighborhood.
A 1980s Belgian 90kg load industrial washer (horizontal axis, front load)
By contrast, commercial washers for internal business operations (still often referred to as "washer/extractor" machines) can include extra features that are never seen in the consumer market. Many commercial washers offer an option for automatic chemical injection of five or more different chemical types, so that the operator does not have to deal with constantly measuring out soap products and fabric softeners for each load by hand. Instead, a precise metering system draws the detergents and wash additives directly from large liquid-chemical storage barrels and injects them as needed into the various wash and rinse cycles. Some computer-controlled commercial washers offer the operator complete control over the various wash and rinse cycles, allowing the operator to program custom washing cycles.
Most large scale industrial washers are horizontal-axis machines, but may have front-load, side-load, or top-load doors. Industrial-sized vertical-axis machines would be too inefficient, hard to load and empty, and too rough on their contents for large-scale use. An industrial clothes washer can be used to batch process up to 800 pounds (360 kg) of textiles at once, and can be used for extremely machine-abusive washing tasks such as stone washing or fabric bleaching and dyeing.
An industrial washer can be mounted on heavy-duty shock absorbers and attached to a concrete floor, so that it can extract water from even the most severely out-of-balance and heavy wash loads. It may be mounted on hydraulic cylinders, permitting the entire washer to be lifted and tilted so that fabrics can be automatically dumped from the wash drum onto a conveyor belt once the cycle is complete.
One special type of continuous-processing washer is known as the tunnel washer. This specialized high-capacity machine does not have separate, distinct wash or rinse cycles, but combines them all in sequence as the laundry gradually moves through a single long, large-diameter horizontal-axis rotating tube.
The historically laborious process of washing clothes has at times been labelled "woman's work" and women from all classes have tried to find ways to get relief from doing laundry.
In 2009, L'Osservatore Romano published an article entitled "The Washing Machine and the Liberation of Women" that was controversially meant to demonstrate that the washing machine had done more for the liberation of woman than the contraceptive pill and abortion rights, which are often associated to Women's Day.[31] The article shocked Italian feminists and provoked criticism from Opposition MP Paola Concia.[32] A study from Université de Montréal also presented a similar point of view to that of L'Osservatore.[33]
Swedish statistician Hans Rosling has suggested that the positive effect the washing machine had on the liberation of women, makes it "the greatest invention of the industrial revolution".[34]
Due to the decreasing gap between the cost of repairs and the cost of purchasing a washing machine, there has been a major decline in the number of washing machines being repaired (to the detriment of the environment). The cost of having a washing machine repaired once they develop faults is often so high relative to the cost of purchasing a new one, that most washing machines are scrapped because they are considered beyond economical repair.[35]
Different washing machine models vary widely in their use of water, detergent, and energy. Because of their use of hot water, washing machines are among the largest consumers of energy in a typical modern home.
- Antonio Merloni SpA: including brand names Asko, Servis, ARDO
- Arçelik: including the brand names Arçelik, Beko, Blomberg, Grundig, Arctic, Altus, Flavel, Elektra Bregenz, Leisure
- BSH: including the brand names Siemens, Bosch
- Candy: including brand names Candy, Hoover, Zerowatt, Helkama, Grepa, Vyatka, Jinling
- Electrolux: including the brand names Electrolux, AEG, Elektrohelios, Zanussi
- Fagor
- GE
- Indesit: including the brand names Indesit, Ariston, Hotpoint, Scholtes
- LG
- Gorenje
- Miele
- SMEG: including brand names SMEG worldwide and White Westinghouse in Europe.
- Samsung
- Vestel: Vestel, Regal, Vestfrost
- Videocon (in India)
- Washex
- Whirlpool: including the brand names Admiral, Amana, Bauknecht, Estate, Inglis, Kenmore, Laden, Maytag, Magic Chef, Kirkland, Roper & Philips
- ^ a b "History of Washing Machines". About.com Inventors. http://inventors.about.com/od/wstartinventions/a/washingmachines.htm. Retrieved 2012-24-05.
- ^ Arwen Mohun, Steam Laundries: Gender, Technology, and Work, Johns Hopkins University Press, 1999, p28
- ^ Arwen Mohun, Steam Laundries: Gender, Technology, and Work, Johns Hopkins University Press, 1999
- ^ Illustration of a 1919 line shaft-driven commercial horizontal washer with a separate large vertical extractor behind it -- Don't Waste Waste, Popular Science monthly, January 1919, page 73, Scanned by Google Books: http://books.google.com/books?id=HykDAAAAMBAJ&pg=PA73
- ^ Mothers and Daughters of Invention: Notes for a Revised History of Technology, Autumn Stanley, Rutgers University Press, 1995, p. 301
- ^ "Deutsches Museum: Schäffer". Deutsches-museum.de. http://www.deutsches-museum.de/bibliothek/unsere-schaetze/technikgeschichte/schaeffer-waschmaschine/. Retrieved 2011-12-12.
- ^ "History of Washing Machines up to 1800". Oldandinteresting.com. 2011-04-14. http://www.oldandinteresting.com/history-washing-machines.aspx. Retrieved 2012-06-01.
- ^ "1862 London Exhibition: Catalogue: Class VIII.: Richard Lansdale". GracesGuide.co.uk. http://www.gracesguide.co.uk/1862_London_Exhibition:_Catalogue:_Class_VIII.:_Richard_Lansdale. Retrieved 2010-06-19.
- ^ Mario Theriault, Great Maritime Inventions 1833-1950, Goose Lane, 2001, p. 28
- ^ "Electric Washing Machine the Latest. Housewives can do Washing in one-third the Time," Des Moines Daily Capitol, November 12, 1904, p. 13.
- ^ David John Cole, Eve Browning, Fred E. H. Schroeder, Encyclopedia of Modern Everyday Inventions, Greenwood 2003
- ^ New York Times, April 13, 1884; New London Journal, July 22, 1917
- ^ "Photograph of Bendix' automatic washing machine, 1937". http://www.oldewash.com/cf/images/IMAGES/327.jpg. Retrieved 2012-06-01.
- ^ US 2165884
- ^ video demonstration[dead link]
- ^ "SANYO Announces the World-First*1 Drum Type Washing Machine with ‘Air Wash’ Function". Sanyo.com. http://www.sanyo.com/news/2007/03/27-2.html. Retrieved 2012-06-01.
- ^ University of Leeds creating a washing machine that needs but 2% of the water/electricity requirements of a conventional washing machine
- ^ Miele W1904 WPS Eco Active featuring Eco Feedback presenting actual demand figures
- ^ "Laundry Products Research". March-2008. http://www.lanfaxlabs.com.au/washing_machines.htm.
- ^ "About.com". http://housewares.about.com/lw/Home-Garden/Home-improvement-renovation/Top-Loading-vs-Front-Loading-Washers-Which-is-Better-.htm.
- ^ "Consumer Energy Center". http://www.consumerenergycenter.org/home/appliances/washers.html.
- ^ a b c "Why can’t modern washing machines rinse properly?". Whitegoodshelp.co.uk. http://www.whitegoodshelp.co.uk/wordpress/why-cant-modern-washing-machines-rinse-properly/. Retrieved 2010-02-16.
- ^ "Allergy Tips and Advice for Household Cleaning". Allergyuk.org. http://www.allergyuk.org/fs_handyhints.aspx. Retrieved 2010-02-16.
- ^ "Washing Machine service manuals". multiple vendors. http://www.eserviceinfo.com/equipment_type/Washing+Machines_51.html.
- ^ "Washing machine usage (part 2)". Washerhelp.co.uk. http://www.washerhelp.co.uk/usage_2.html. Retrieved 2010-02-16.
- ^ "DIY washing machine repairs (Part 4)". Washerhelp.co.uk. http://www.washerhelp.co.uk/diy-repair-help_4.html. Retrieved 2010-02-16.
- ^ "Clothes Washers Key Product Criteria". Energystar.gov. http://www.energystar.gov/index.cfm?c=clotheswash.pr_crit_clothes_washers. Retrieved 2012-06-01.
- ^ "ENERGY STAR Qualified Clothes Washers". Energystar.gov. 2011-01-01. http://www.energystar.gov/index.cfm?c=clotheswash.search_clotheswashers. Retrieved 2012-06-01.
- ^ "Tax Incentives Assistance Project". Energytaxincentives.org. http://energytaxincentives.org/builders/appliances.php. Retrieved 2012-06-01.
- ^ "Energy Management In Home Laundering". Web.archive.org. 2009-02-02. http://web.archive.org/web/20090202000714/http://cleaning101.com/laundry/fact/fact_sheet8.cfm. Retrieved 2012-06-01.
- ^ Galeotti, Giulia (8). "Metti il detersivo, chiudi il coperchio e rilassati" (in IT). L'Osservatore Romano. http://www.vatican.va/news_services/or/or_quo/cultura/056q05a1.html. Retrieved 25 July 2011.
- ^ "Washer liberated women, Vatican says". Web.archive.org. 2009-03-12. http://web.archive.org/web/20090312024157/http://www.nationalpost.com/news/story.html?id=1371528. Retrieved 2012-06-01.
- ^ "Fridges And Washing Machines Liberated Women, Study Suggests". Sciencedaily.com. 2009-03-12. http://www.sciencedaily.com/releases/2009/03/090312150735.htm. Retrieved 2012-06-01.
- ^ "Hans Rosling and the magic washing machine". TED Conferences. December 2010. http://www.ted.com/talks/hans_rosling_and_the_magic_washing_machine.html. Retrieved 17 November 2011.
- ^ "Are new washing machines only built to last 5 years?". Washerhelp.co.uk. http://www.washerhelp.co.uk/buying-advice-2.html. Retrieved 2012-06-01.