Vegetable fats and oils are lipid materials derived from plants. Physically, oils are liquid at room temperature, and fats are solid. Chemically, both fats and oils are composed of triglycerides, as contrasted with waxes which lack glycerin in their structure. Although many plant parts may yield oil,[1] in commercial practice, oil is extracted primarily from seeds.
The melting temperature distinction between oils and fats is imprecise, since definitions of room temperature vary, and typically natural oils have a melting range instead of a single melting point since natural oils are not chemically homogeneous. Although thought of as esters of glycerin and a varying blend of fatty acids, fats and oils also typically contain free fatty acids, monoglycerides and diglycerides, and unsaponifiable lipids.
Vegetable fats and oils may or may not be edible. Examples of inedible vegetable fats and oils include processed linseed oil, tung oil, and castor oil used in lubricants, paints, cosmetics, pharmaceuticals, and other industrial applications.
Oils extracted from plants have been used since ancient times and in many cultures. As an example, in a 4,000-year-old "kitchen" unearthed in Indiana's Charlestown State Park, archaeologist Bob McCullough of Indiana University-Purdue University Fort Wayne found evidence that natives used large slabs of rock to crush hickory nuts, then boiled them in water to extract the oil.[2]
Many vegetable oils are consumed directly, or indirectly as ingredients in food – a role that they share with some animal fats, including butter and ghee. The oils serve a number of purposes in this role:
- Shortening – to give pastry a crumbly texture.
- Texture – oils can serve to make other ingredients stick together less.
- Flavor – while less-flavorful oils command premium prices[citation needed], some oils, such as olive, sesame or almond oil, may be chosen specifically for the flavor they impart.
- Flavor base – oils can also "carry" flavors of other ingredients, since many flavors are present in chemicals that are soluble in oil.
Secondly, oils can be heated, and used to cook other foods. Oils suitable for this purpose must have a high flash point. Such oils include the major cooking oils – soy, canola, sunflower, safflower, peanut, cottonseed, etc. Tropical oils, like palm oil and coconut oil, and rice bran oil, are particularly valued in Asian cultures for high temperature cooking, because of their unusually high flash point.
Unsaturated vegetable fats and oils can be transformed through partial or complete "hydrogenation" into fats and oils of higher melting point. The hydrogenation process involves "sparging" the oil at high temperature and pressure with hydrogen in the presence of a catalyst, typically a powdered nickel compound. As each carbon-carbon double-bond is chemically reduced to a single bond, two hydrogen atoms each form single bonds with the two carbon atoms. The elimination of double bonds by adding hydrogen atoms is called saturation; as the degree of saturation increases, the oil progresses toward being fully hydrogenated. An oil may be hydrogenated to increase resistance to rancidity (oxidation) or to change its physical characteristics. As the degree of saturation increases, the oil's viscosity and melting point increase.
The use of hydrogenated oils in foods has never been completely satisfactory. Because the center arm of the triglyceride is shielded somewhat by the end fatty acids, most of the hydrogenation occurs on the end fatty acids, thus making the resulting fat more brittle[citation needed]. A margarine made from naturally more saturated oils will be more plastic (more "spreadable") than a margarine made from hydrogenated soy oil[citation needed]. While full hydrogenation produces largely saturated fatty acids, partial hydrogenation results in the transformation of unsaturated cis fatty acids to trans fatty acids in the oil mixture due to the heat used in hydrogenation. Since the 1970s, partially hydrogenated oils and their trans fats have increasingly been viewed as unhealthy.
In the U.S., the Standard of Identity for a product labeled as "vegetable oil margarine" specifies only canola, safflower, sunflower, corn, soybean, or peanut oil may be used.[3] Products not labeled "vegetable oil margarine" do not have that restriction.
Vegetable oils are used as an ingredient or component in many manufactured products.
Many vegetable oils are used to make soaps, skin products, candles, perfumes and other personal care and cosmetic products. Some oils are particularly suitable as drying oils, and are used in making paints and other wood treatment products. Dammar oil (a mixture of linseed oil and dammar resin), for example, is used almost exclusively in treating the hulls of wooden boats. Vegetable oils are increasingly being used in the electrical industry as insulators as vegetable oils are not toxic to the environment, biodegradable if spilled and have high flash and fire points. However, vegetable oils are less stable chemically, so they are generally used in systems where they are not exposed to oxygen, and they are more expensive than crude oil distillate. Synthetic tetraesters, which are similar to vegetable oils but with four fatty acid chains compared to the normal three found in a natural ester, are manufactured by Fischer esterification. Tetraesters generally have high stability to oxidation and have found use as engine lubricants. Vegetable oil is being used to produce biodegradable hydraulic fluid[4] and lubricant.[5]
One limiting factor in industrial uses of vegetable oils is that all such oils eventually chemically decompose, turning rancid. Oils that are more stable, such as ben oil or mineral oil, are preferred for some industrial uses.
Vegetable-based oils, like castor oil, have been used as medicine and as lubricants for a long time. Castor oil has numerous industrial uses, primarily due to the presence of hydroxyl groups on the fatty acid chains. Castor oil, and other vegetable oils which have been chemically modified to contain hydroxyl groups, are becoming increasingly important in the production of polyurethane plastic for many applications. These modified vegetable oils are known as natural oil polyols.
Vegetable oil is used in production of some pet foods. AAFCO defines vegetable oil, in this context, as the product of vegetable origin obtained by extracting the oil from seeds or fruits which are processed for edible purposes. In some poorer grade pet foods, the oil is listed only as "vegetable oil", without specifying the particular oil.[6]
Vegetable oils are also used to make biodiesel, which can be used like conventional diesel. Some vegetable oil blends are used in unmodified vehicles but straight vegetable oil, also known as pure plant oil, needs specially prepared vehicles which have a method of heating the oil to reduce its viscosity. The vegetable oil economy is growing and the availability of biodiesel around the world is increasing.
The NNFCC estimate that the total net greenhouse gas savings when using vegetable oils in place of fossil fuel-based alternatives for fuel production, range from 18 to 100%.[7]
To produce vegetable fats and oils, the oil first needs to be removed from the oil-bearing plant components, typically seeds or legumes.[citation needed] This can be done via mechanical or chemical extraction. The extracted oil can then be purified and, if required, refined or chemically altered.
Oils can also be removed via mechanical extraction, termed "crushing" or "pressing." This method is typically used to produce the more traditional oils (e.g., olive, coconut etc.), and it is preferred by most "health-food" customers in the United States and in Europe.[citation needed] There are several different types of mechanical extraction.[8] Expeller-pressing extraction is common, though the screw press, ram press, and Ghani (powered mortar and pestle) are also used. Oil seed presses are commonly used in developing countries, among people for whom other extraction methods would be prohibitively expensive; the Ghani is primarily used in India.[9] The amount of oil extracted using these methods varies widely, as shown in the following table for extracting mowrah butter in India:[10]
Method |
Percentage extracted |
Ghani[11] |
20–30% |
Expellers |
34–37% |
Solvent |
40–43% |
The processing vegetable oil in commercial applications is commonly done by chemical extraction, using solvent extracts, which produces higher yields and is quicker and less expensive. The most common solvent is petroleum-derived hexane. This technique is used for most of the "newer" industrial oils such as soybean and corn oils.
Supercritical carbon dioxide can be used as a non-toxic alternative to other solvents.[12]
Oils may be partially hydrogenated to produce various ingredient oils. Lightly hydrogenated oils have very similar physical characteristics to regular soy oil, but are more resistant to becoming rancid. Margarine oils need to be mostly solid at 32 °C (90 °F) so that the margarine does not melt in warm rooms, yet it needs to be completely liquid at 37 °C (98 °F), so that it doesn't leave a "lardy" taste in the mouth.
Hardening vegetable oil is done by raising a blend of vegetable oil and a catalyst in near-vacuum to very high temperatures, and introducing hydrogen. This causes the carbon atoms of the oil to break double-bonds with other carbons, each carbon forming a new single-bond with a hydrogen atom. Adding these hydrogen atoms to the oil makes it more solid, raises the smoke point, and makes the oil more stable.
Hydrogenated vegetable oils differ in two major ways from other oils which are equally saturated. During hydrogenation, it is easier for hydrogen to come into contact with the fatty acids on the end of the triglyceride, and less easy for them to come into contact with the center fatty acid. This makes the resulting fat more brittle than a tropical oil; soy margarines are less "spreadable". The other difference is that trans fatty acids (often called trans fat) are formed in the hydrogenation reactor, and may amount to as much as 40 percent by weight of a partially hydrogenated oil. Hydrogenated oils, especially partially hydrogenated oils with their higher amounts of trans fatty acids are increasingly thought to be unhealthy.
In the processing of edible oils, the oil is heated under vacuum to near the smoke point, and water is introduced at the bottom of the oil. The water immediately is converted to steam, which bubbles through the oil, carrying with it any chemicals which are water-soluble. The steam sparging removes impurities that can impart unwanted flavors and odors to the oil.
The following triglyceride vegetable oils account for almost all worldwide production, by volume. All are used as both cooking oils and as SVO or to make biodiesel. According to the USDA, the total world consumption of major vegetable oils in 2007/08 was:[13]
Note that these figures include industrial and animal feed use. The majority of European rapeseed oil production is used to produce biodiesel, or used directly as fuel in diesel cars which may require modification to heat the oil to reduce its higher viscosity. The suitability of the fuel should come as little surprise, as Rudolf Diesel originally designed his engine to run on peanut oil.
Other significant triglyceride oils include:
While olive oil and other pressed oils have been around for millennia, Procter & Gamble researchers were innovators when they started selling cottonseed oil as a creamed shortening, in 1911. Ginning mills were happy to have someone haul away the cotton seeds. Procter & Gamble researchers learned how to extract the oil, refine it, partially hydrogenate it (causing it to be solid at room temperature and thus mimic natural lard), and can it under nitrogen gas. Compared to the rendered lard Procter & Gamble was already selling to consumers, Crisco was cheaper, easier to stir into a recipe, and could be stored at room temperature for two years without turning rancid. (Procter & Gamble sold their fats and oils brands – Jif and Crisco – to The J.M. Smucker Co. in 2002.)
Soybeans were an exciting new crop from China in the 1930s. Soy was protein-rich, and the medium viscosity oil was high in polyunsaturates. Henry Ford established a soybean research laboratory, developed soybean plastics and a soy-based synthetic wool, and built a car "almost entirely" out of soybeans.[14] Roger Drackett had a successful new product with Windex, but he invested heavily in soybean research, seeing it as a smart investment.[15] By the 1950s and 1960s, soybean oil had become the most popular vegetable oil in the US.
In the mid-1970s, Canadian researchers developed a low-erucic-acid rapeseed cultivar. Because the word "rape" was not considered optimal for marketing, they coined the name "canola" (from "Canada Oil low acid"). The U.S. Food and Drug Administration approved use of the canola name in January 1985,[16] and U.S. farmers started planting large areas that spring. Canola oil is lower in saturated fats, and higher in monounsaturates and is a better source of omega-3 fats than other popular oils. Canola is very thin (unlike corn oil) and flavorless (unlike olive oil), so it largely succeeds by displacing soy oil, just as soy oil largely succeeded by displacing cottonseed oil.
A large quantity of used vegetable oil is produced and recycled, mainly from industrial deep fryers in potato processing plants, snack food factories and fast food restaurants.
Recycled oil has numerous uses, including use as a direct fuel, as well as in the production of biodiesel, soap, animal feed, pet food, detergent, and cosmetics. It's traded as the commodity, yellow grease.
Since 2002, an increasing number of European Union countries have prohibited the inclusion of recycled vegetable oil from catering in animal feed. Used cooking oils from food manufacturing, however, as well as fresh or unused cooking oil, continue to be used in animal feed.[17]
Hydrogenated oils have been shown to cause what is commonly termed the "double deadly effect", raising the level of LDLs and decreasing the level of HDLs in the blood, increasing the risk of blood clotting inside blood vessels.[18]
A high consumption of omega-6 polyunsaturated fatty acids (PUFAs), which are found in most types of vegetable oil (e.g. soybean oil, corn oil – the most consumed in USA, sunflower oil, etc.) may increase the likelihood that postmenopausal women will develop breast cancer.[19] A similar effect was observed on prostate cancer in mice.[20] Plant based oils high in monounsaturated fatty acids, such as olive oil, peanut oil, and canola oil are relatively low in omega-6 PUFAs and can be used in place of high-polyunsaturated oils.[citation needed]
There is increasing concern[by whom?] that the product labeling that includes "vegetable fat" or "vegetable oil" in its list of ingredients masks the identity of the fats or oils present. This has been made more pressing as concerns have been raised over the environmental impact of palm oil in particular, especially given the predominance of palm oil.[21]
- ^ Compare, for example, the list of raw materials from which essential oils are extracted
- ^ "4,000-year-old 'kitchen' unearthed in Indiana". Archaeo News. January 26, 2006. http://www.stonepages.com/news/archives/001708.html. Retrieved 2006-07-31.
- ^ "Margarine". Code of Federal Regulations Title 21, Chapter I, Subchapter B, Part 166. U.S. Food and Drug Administration. April 1, 2011. http://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfcfr/CFRSearch.cfm?CFRPart=166&showFR=1. Retrieved 2011-11-01.
- ^ Linda McGraw (April 19, 2000). "Biodegradable Hydraulic Fluid Nears Market". USDA. http://www.ars.usda.gov/is/pr/2000/000419.htm. Retrieved 2006-09-29.
- ^ "Cass Scenic Railroad, West Virginia". GWWCA. http://www.gwrranci.org/gallery/20060824/. Retrieved 2011-11-01.
- ^ "Ingredients to avoid". The Dog Food Project. http://www.dogfoodproject.com/index.php?page=badingredients. Retrieved 2007-06-26.
- ^ National Non-Food Crops Centre. GHG Benefits from Use of Vegetable Oils for Electricity, Heat, Transport and Industrial Purposes, NNFCC 10-016
- ^ "Kalu (oil presser)". Banglapedia. http://banglapedia.search.com.bd/HT/K_0050.htm. Retrieved 2006-11-12.
- ^ Janet Bachmann. "Oilseed Processing for Small-Scale Producers". http://www.attra.org/attra-pub/oilseed.html. Retrieved 2006-07-31.
- ^ B.L. Axtell from research by R.M. Fairman (1992). "Illipe". Minor oil crops. FAO. http://www.fao.org/es/faodef/fdef14e.htm. Retrieved 2006-11-12.
- ^ "Ghani". Banglapedia. http://banglapedia.search.com.bd/HT/G_0089.htm. Retrieved 2006-11-12. A ghani is a traditional Indian oil press, driven by a horse or ox.
- ^ Eisenmenger, Michael; Dunford, Nurhan T.; Eller, Fred; Taylor, Scott; Martinez, Jose (2006). "Pilot-scale supercritical carbon dioxide extraction and fractionation of wheat germ oil". Journal of the American Oil Chemists' Society 83 (10): 863. DOI:10.1007/s11746-006-5038-6.
- ^ January 2009. Oilseeds: World Market and Trade. FOP 1-09. USDA. 2009-01-12. http://www.fas.usda.gov/oilseeds/circular/2009/January/Oilseedsfull0109.pdf. , Table 03: Major Vegetable Oils: World Supply and Distribution at Oilseeds: World Markets and Trade Monthly Circular
- ^ "Soybean Car". Popular Research Topics. Benson Ford Research Center. http://www.thehenryford.org/research/soybeancar.aspx. Retrieved 2006-10-23.
- ^ Horstman, Barry M (1999-05-21). "Philip W. Drackett: Earned profits, plaudits". The Cincinnati Post (E. W. Scripps Company). Archived from the original on 2005-12-05. http://web.archive.org/web/20051205202014/http://www.cincypost.com/living/1999/drack052199.html. Retrieved 2006-10-22.
- ^ "Canola oil". Archived from the original on 2006-06-17. http://web.archive.org/web/20060617234030/http://www.fda.gov/bbs/topics/ANSWERS/ANS00198.html. Retrieved 2006-07-31.
- ^ "Waste cooking oil from catering premises". http://www.food.gov.uk/foodindustry/guidancenotes/foodguid/wastecookingoil. Retrieved 2006-07-31.
- ^ "Vegetable Oil – Everything You Need To Know About Vegetable Oils". http://vegetableoils.org/vegetableoil/.
- ^ Emily Sonestedt, Ulrika Ericson, Bo Gullberg, Kerstin Skog, Håkan Olsson, Elisabet Wirfält (2008). "Do both heterocyclic amines and omega-6 polyunsaturated fatty acids contribute to the incidence of breast cancer in postmenopausal women of the Malmö diet and cancer cohort?". The International Journal of Cancer (UICC International Union Against Cancer) 123 (7): 1637–1643. DOI:10.1002/ijc.23394. PMID 18636564.
- ^ Berquin IM, Min Y, Wu R, et al. (July 2007). "Modulation of prostate cancer genetic risk by omega-3 and omega-6 fatty acids". The Journal of Clinical Investigation 117 (7): 1866–75. DOI:10.1172/JCI31494. PMC 1890998. PMID 17607361. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1890998.
- ^ An issue highlighted in documentaries such as Dying for a Biscuit on BBC Panorama http://www.bbc.co.uk/programmes/b00r4t3s
- Beare-Rogers, J.L. (1983). Trans and positional isomers of common fatty acids. In H.H. Draper. . Advances in Nutritional Research (Plenum Press, New York) 5: 171–200. PMID 6342341.
- Berry, E.M. and Hirsch, J. (1986). "Does dietary linolenic acid influence blood pressure?". American Journal of Clinical Nutrition 44: 336–340.
- Beyers, E.C. and Emken, E.A. (1991). "Metabolites of cis, trans, and trans, cis isomers of linoleic acid in mice and incorporation into tissue lipids". Biochimica et Biophysica Acta 1082: 275–284.
- Birch, D.G., Birch, E.E., Hoffman, D.R., and Uauy, R.D. (1992). "Retinal development in very-low-birth-weight infants fed diets differing in omega-3 fatty acids". Investigative Ophthalmology and Visual Science 33 (8): 2365–2376.
- Birch, E.E., Birch, D.G., Hoffman, D.R., and Uauy, R. (1992). "Dietary essential fatty acid supply and visual acuity development". Investigative Ophthalmology and Visual Science 33 (11): 3242–3253.
- Brenner, R.R. (1989). A.J. Vergroesen and M. Crawford. ed. Factors influencing fatty acid chain elongation and desaturation, in the role of fats in human nutrition (2 ed.). Academic Press, London. pp. 45–79.
- "Report of the task force on trans fatty acids". British Nutrition Foundation. 1987.
- "Central Soya annual report". 1979.
- Emken, E. A. (1984). "Nutrition and biochemistry of trans and positional fatty acid isomers in hydrogenated oils". Annual Reviews of Nutrition 4: 339–376.
- Enig, M.G., Atal, S., Keeney, M and Sampugna, J. (1990). "Isomeric trans fatty acids in the U.S. diet". Journal of the American College of Nutrition 9: 471–486.
- Ascherio, A., Hennekens, C.H., Baring, J.E., Master, C., Stampfer, M.J. and Willett, W.C. (1994). "Trans fatty acids intake and risk of myocardial infarction". Circulation 89: 94–101.
- Gurr, M.I. (1983). "Trans fatty acids: Metabolic and nutritional significance". Bulletin of the International Dairy Federation 166: 5–18.
- Hui Y. H., ed. Bailey's Industrial Oil and Fat Products.
- Koletzko, B. (1992). "Trans fatty acids may impair biosynthesis of long-chain polyunsaturates and growth in man". Acta Paediatrica 81: 302–306.
- Lief, Alfred (1958). It floats: The story of Procter & Gamble. Rinehart.
- MacMillen, Harold W. (1967). Mr. Mac and Central Soya: the foodpower story. Newcomen Society.
- Marchand, C.M. (1982). "Positional isomers of trans-octadecenoic acids in margarine". Canadian Institute of Food Science and Technology Journal 15: 196–199.
- Mensink, R.P., Zock, P.L., Katan, M.B. and Hornstra, G. (1992). "Effect of dietary cis-and trans-fatty acids on serum lipoprotein[a] levels in humans". Journal of Lipid Research 33: 1493–1501.
- Siguel, E.N. and Lerman, R.H. (1993). "Trans fatty acid patterns in patients with angiographically documented coronary artery disease". American Journal of Cardiology 71: 916–920.
- Troisi, R., Willett, W.C. and Weiss, S.T. (1992). "Trans-fatty acid intake in relation to serum lipid concentrations in adult men". American Journal of Clinical Nutrition 56: 1019–1024.
- Willett, W.C., Stampfer, M.J., Manson, J.E., Colditz, G.A., Speizer, F.E., Rosner, B.A., Sampson, L.A. and Hennekens, C.H. (1993). "Intake of trans fatty acids and risk of coronary heart disease among women". The Lancet 341: 581–585.
- Gupta, Monoj K. (2007). Practical guide for vegetable oil processing. AOCS Press, Urbana, Illinois. ISBN 978-1-893997-90-5.
- Jee, Michael, ed. (2002). Oils and Fats Authentication. Blackwell Publishing, Oxford, England. ISBN 1-84127-330-9.
- Salunkhe, D.K., Chavan, J.K., Adsule, R.N. and Kadam, S.S. (1992). World Oilseeds – Chemistry, Technology, and Utilization. Van Nostrand Reinhold, New York. ISBN 0-442-00112-6.