
Abstract

Cost functions dual to stochastic production technologies are derived

and their properties are discussed. These cost functions are shown to be

consistent with expected-utility maximization without placing serious struc-

tural restrictions on the underlying technology.
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1. Introduction

Cost Functions and Duality for Stochastic

Technologies

Perhaps the most singular aspect of agricultural production is its randomness.

Certainly, the stochastic nature of agricultural production and the economic

problems associated with adjusting to it have provided the most commonly

accepted arguments for agriculture�s �special nature�, and consequently for its

frequently preferential treatment in the economy. A similar spirit seems to per-

vade the analytical thinking of agricultural economists: Because agricultural

production is stochastic, and because stochastic production is inherently differ-

ent from nonstochastic production, it is often thought that common concepts



are the

only conditions that a stochastic technology must satisfy in order for well behaved

cost functions, exhibiting all their usual properties in terms of input prices, to

exist.

from economic theory no longer apply. Nowhere is this more apparent than in

the confusion that has arisen in agricultural economics over the existence of cost

functions for stochastic technologies. A succinct statement of the conventional

thinking has been provided by Pope and Chavas (1994):�...if one restricts atten-

tion to cost functions that are independent of risk preferences,...consistency of

cost minimization with expected utility maximization imposes some structure

on production technology.�

Even in the case of a nonstochastic technology, consistency of cost minimiza-

tion imposes some structure on the production technology in the sense that the

existence of cost functions requires some minimal regularity properties. Typi-

cally, these include that the output chosen is technically feasible and that input

sets be closed. This paper shows that closedness and technical feasibility

And under the presumption that individuals maximize the expected util-

ity of net returns, these cost functions are independent of the producer�s risk

preferences. Moreover, if these conditions are satis�ed, the cost function is dual

to a technology exhibiting free disposal of inputs and convexity of input sets

that is observationally equivalent to the original stochastic technology. In other
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2. The Model

words, duality theory applies exactly for stochastic technologies under the same

assumptions required for it to apply to nonstochastic technologies.

In what follows, we �rst introduce our notation and our de�nition of the

technology. For concreteness sake, we use a representation of the technology

similar to that analyzed by Pope and Chavas (1994), but more general in that

it applies to non-differentiable technologies. We show that well-behaved cost

functions exist for this technology, develop the properties of these cost func-

tions, state a duality result relating the cost function to stochastic technology,

and then show that maximizers of the expected utility from net returns always

minimize cost. After that we brie�y consider extensions of our approach to the

more general state-contingent formulation of production uncertainty found, for

example, in Chambers and Quiggin (1992, 1996, 1997) and then, for the pur-

poses of illustration, present a simple example of the formulation of an optimal

multiple-peril crop insurance program using our methods.

Consider a �rm whose attitudes toward risk are characterized by a von Neumann-

Morgenstern utility function, where denotes terminal wealth. We pre-

sume that the utility function is strictly increasing and continuous. Terminal
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A function is upper semi-continuous in if its upper contour sets are
closed sets for all

wealth is assumed to take the form: , where is initial

wealth, is an n-dimensional vector of nonnegative inputs committed prior to

the resolution of uncertainty, is an n-dimensional vector of strictly positive

and nonstochastic input prices, is a nonnegative function giving stochastic

revenue resulting from the application of inputs and the stochastic factor .

The stochastic factor may be variously interpreted as a stochastic random input

beyond the control of the producer and not known at the time that input alloca-

tion decisions are made, or as an indicator of the state of the world. Unlike most

earlier studies, there is no need for us to assume that the technology is suffi-

ciently smooth to be differentiable or even continuous. Instead, we only assume

that is upper semi-continuous in . Because differentiable technologies are

always upper semi-continuous, it follows, for example, that our results cover the

entire range of technologies considered by Pope and Chavas (1994). However,

our results also apply to an even broader class of technologies (speci�cally those

with closed input requirement sets). An empirically important example of a sto-

chastic technology that is not differentiable but which is upper semi-continuous

is the class of Leontief technologies. is assumed to have a �xed support given
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by the closed interval with a monotone probability distribution function

with

Under these assumptions, an expected utility maximizer chooses the input

allocation to solve the following problem:

The most modern approach to deriving a cost function for a nonstochastic tech-

nology is to specify the technology in terms of input sets or input correspon-

dences which give the input combinations capable of producing a given bundle

of outputs. Here we pursue a similar strategy except that we infer an input

correspondence for a pro�le of stochastic revenues from the stochastic technol-

ogy described in the previous section. By a pro�le or trajectory of stochastic

revenues, we mean a relation which gives for every realization of the stochastic

factor, a level of revenue which we shall denote by Perhaps ex-

amples based on special cases of the technology detailed in the previous section

best illustrate the concept of a trajectory. Consider the cases of multiplicative
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and additive uncertainty given by:

where When the input bundle is �xed at any particular level, say ,

then in the multiplicative case the stochastic technology generates a trajectory of

revenues that is depicted pictorially as a line with slope emanating from

the origin and stopping at the point , while in the additive case, the

stochastic technology generates a pro�le of revenues that is depicted pictorially

as a line with slope one and vertical intercept which ends at the point

(see Figure 1). Hence, choosing a particular input combination is

equivalent to picking a pro�le of revenues when a stochastic technology prevails.

Or alternatively choosing to produce a pro�le is equivalent to picking an input

combination if the pro�le in question is technically feasible.

Now what does it take to be able to produce an arbitrary trajectory

of stochastic revenues using the stochastic technology developed

above? Clearly, an input vector can produce a particular pro�le if and only if

satis�es: for all So continuing to denote the pro�le by ,
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its input set is de�ned by the correspondence:

where denotes the input set associated with producing the

single stochastic revenue given that actually occurs, i.e.,

. Put another way, is the collection of input combinations that

will produce the revenue, given that occurs. Figure 2 illustrates,

for graphical simplicity, the case where ={1, 2}. When , the isoquant

for the level of revenue given by is illustrated as the lower boundary of the

set under the presumption (made for purposes of illustration only) that

inputs are freely disposable, and the isoquant for the level of stochastic revenue

is given by the lower boundary of the set The intersection of these two

input sets, , is given by all input combinations in the shaded area. Notice,

in particular, that the input set for this stochastic technology will typically be

kinked at points of intersection of the frontiers of the input sets.
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Because is upper semi-continuous, each input set is a closed

set, and thus by a standard result, must also be closed as it is formed by

taking the intersection of an in�nite number of closed sets. Having a clear notion

of an input set it is now an easy matter to de�ne a well-behaved cost function

for the trajectory . We have:

if is nonempty and otherwise. Using well-known arguments one can

establish that because is a closed set, this cost function actually exists and

possesses all the properties usually associated with cost functions in the vector

of input prices (Chambers, 1988, Chapter 2). Hence, we state, without proof,

the following obvious result:

At this juncture, it is worth emphasizing that this fundamental result about

the existence of a cost function for the stochastic technology only rests upon the

single assumption that is upper semi-continuous in
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In addition to satisfying these usual properties of a cost function,

also satis�es Shephard�s lemma. Namely, if there exists a unique solution to

the cost minimization problem, then the cost function is differentiable in input

prices, and its gradient in input prices is the vector of cost minimizing demands.

And, if the cost function is differentiable in input prices, there exists a unique

solution to the cost minimization problem which is equal to the gradient of the

cost function in input prices (Färe, 1988).

Before turning to the possible dual relation between and , it

is worthwhile to divert our attention for a moment and illustrate how

relates to the cost functions for the revenue functions, i.e., the cost

functions associated with particular realizations of To that end, we de�ne

the cost functions:

if is nonempty and otherwise. Denote:
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By the de�nition of , it follows immediately that for all

. Hence,

from which we immediately conclude:.

The cost function for the stochastic revenue pro�le thus provides an upper

bound for all the cost functions, and in particular always provides an

upper bound for the revenue that is the costliest to produce. Sometimes,

the inequality in the proposition can be replaced by an equality. This is always

true, for example, when is a scalar. And in Figure 2 if the relative input prices

are given by the dashed line segment the cost function for the stochastic

revenue pro�le is given by the cost function for the costliest revenue.

More generally, however, it is not. Suppose, for example, that relative input

prices are given by the dashed line segment For these relative prices, least

cost over is given by point A which is not cost minimizing for either

revenue.
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This link between the cost functions and also helps illustrate

the role that technical feasibility of a revenue pro�le plays in determining

As an example, consider the case of multiplicative production uncertainty dis-

cussed earlier and illustrated in Figure 1. If such a technology applies and one

chooses a revenue pro�le with a positive intercept in Figure 1, no combination

of inputs will be able to produce that pro�le because no combinations of inputs

is capable of producing a strictly positive output in the worst case, under

multiplicative uncertainty even if the revenue pro�le is achievable in all other

states of nature. Hence, and consequently

Another immediate implication of this Proposition is that the cost function

dual to the stochastic production technology will not generally be smoothly

differentiable in all the elements of The nondifferentiability of emerges

from the fact that the output set dual to

is not strictly convex and its frontier possesses kinks (Chambers and Quiggin,

1998).
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4. Duality for the Stochastic Technology

: If satis�es the following properties: for

all is a convex set, ,

Arguably the single most important development in the theory of cost and pro-

duction was Shephard�s (1953, 1970) discovery of the dual correspondence be-

tween the production structure and the cost function. This discovery has had

important consequences at both an empirical and theoretical level. In this sec-

tion, we show that is dual to a stochastic production structure character-

ized by an input set that is closed, convex, and satis�es free disposability

of inputs. We start by de�ning the :

Because is de�ned by the intersection of closed half spaces, it must be

closed and convex by standard results on convex sets (Rockafellar, 1970). Fur-

thermore, it is also apparent that , i.e., the shadow

input correspondence satis�es free disposability of inputs. By standard duality

theorems (e.g., Färe, 1988), it follows immediately that:
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As a reviewer points out, the empirically appealing Just-Pope technology can violate free
disposability of inputs.

An immediate implication of the proposition is that a cost function derived

from a stochastic technology characterized by closed input sets (upper semi-

continuity of ) is dual to a stochastic technology characterized by closed

and convex input sets satisfying free disposability of inputs. Thus, even if the

technology from which is derived does not satisfy these properties , there

will exist a stochastic technology satisfying these properties which is observation-

ally equivalent to the original technology in the sense that a cost minimizer will

make the same economic choices from this technology (the one corresponding to

the shadow input correspondence) as he or she would from the original technol-

ogy. Hence, if one can establish (as we do in the next section) expected-utility

maximizers minimize cost, then it follows immediately that no true generality

is lost from an economic perspective in operating with a technology satisfying

the same properties as

We have already established that satis�es one of the properties in the

proposition (closedness). We now brie�y discuss conditions on which

guarantee the existence of this duality. Free disposability of inputs is guaran-
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5. Expected Utility Maximizers Do Minimize Cost

If is a nondecreasing, upper semi-continuous, and quasi-

concave function of the inputs that satis�es �no free lunch�then

teed by assuming that is nondecreasing in while convexity of is

ensured by assuming that is quasi-concave in inputs. (Quasi-concavity of

implies that each is convex, and standard results on convex sets

then implies that is convex (Rockafellar, 1970).) The �nal property in

the proposition we might refer to as �no free lunch� in accordance with standard

terminology in the nonstochastic production literature. A sufficient condition

for the technology to satisfy this property is that not be capable of

producing a positive revenue, i.e., some inputs must be committed if a positive

revenue is to be had in any state.

Now that we have derived a cost function for the stochastic technology that is

dual to a stochastic technology possessing closed and convex input sets exhibit-

ing free disposability of inputs, we shall demonstrate that the expected-utility

maximizaton problem can be broken down into two stages. In the �rst stage,

the producer acts to minimize cost of a revenue trajectory or pro�le, and in the
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the expected utility maximizing producer

chooses the input bundle so as to minimize the cost of producing the pro�le of

stochastic revenues given by:

second stage the producer picks the utility maximizing revenue pro�le. De�ne:

and let

denote the stochastic revenue that would occur if is the realization of the

stochastic factor and inputs are evaluated at their expected-utility maximizing

levels. Put another way, is the optimal revenue contingent

upon the realization of In this sense, it can be interpreted as -contingent

or state-contingent revenue. With these de�nitions in hand, it is now easy to

establish that the expected utility maximizing producer, in fact, acts to minimize

cost. In particular, our claim is that
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Corollary 5.2.
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: for all capable of producing the tra-

jectory of optimal stochastic revenues

:An expected-utility maximizer solves:

The easiest way to see that this must be true is to suppose the contrary and

assume that there exists a bundle of inputs cheaper than , which when

combined with the stochastic factor is capable of producing . Call

this bundle of inputs Now the fact that is strictly increasing in and

produces implies

thus violating the de�nition of as the expected-utility maximizing input

choice. This argument establishes that:

17



.�

3

4

3

4
w x

ex post

The Proposition is valid for even more general preference structures than expected utility.
All that is required is that the producer�s preferences be nondecreasing in

We would also argue that ours is the more natural decomposition of the producer maxi-
mization problem in the context of stochastic production

In evaluating this result, it is important to recognize several things. Most

importantly, the only restriction that is placed upon the producer�s preferences

(apart from those imposed by the expected-utility model) for the cost func-

tion to exist is that his or her utility be increasing in wealth , and the

only condition that consistency of cost minimization with expected-utility max-

imization imposes on the stochastic technology is that its input sets be closed.

There is no need to make any presumption about the individual�s degree of risk

aversion, any degree of differentiability of the technology or the preference struc-

ture, or any other common measure of his or her attitudes toward risk. Thus,

the proposition is more general than, say, those presented by Pope and Chavas

(1994) which impose more structure upon both producer preferences and the

technology. Second, by our duality results, the cost function that results from

choosing inputs so as to minimize the cost of producing the stochastic revenue

trajectory can be used to exhaustively characterize the economically relevant

technology. Next this decomposition of the expected-utility maximization prob-

lem is distinct from those presented by Pope and Chavas (1994) , and hence our

Proposition does not invalidate their claims about their cost functions. However,
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6. Extensions and Applications

Rational ex-

pected utility maximizers always minimize cost.

it does invalidate the naive conclusion that one might draw from their analysis,

and that is, that expected utility maximizers do not minimize cost.

Finally, and most importantly,

the Proposition suggests a natural two-stage procedure to pursue in analyzing

decisionmaking for a risk-averse producer facing a stochastic technology: First,

�nd the minimum cost of producing all feasible revenue trajectories, and then

choose the expected utility maximizing trajectory (trajectories).

To keep our arguments as close as possible to the model of producer decision-

making under uncertainty most familiar to agricultural economists, we have

assumed that the individual producer maximizes expected utility. However, the

only property of expected-utility maximization that we have explicitly employed

in our arguments is the monotonicity of the von Neumann-Morgenstern utility

function. It turns out that all our arguments continue to apply under even more

general preference structures such as rank-dependent expected utility (Quiggin,

1993) or general smooth preferences (Machina, 1982) so long as producer prefer-

ences are at least weakly decreasing in producer input cost in the case of linear

input prices or weakly decreasing in a separable function of inputs under more
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Technically, this is an extremely mild restriction because it can never be contradicted
empirically.

Alternatively, nondifferentiability of the cost function can be avoided by placing enough
structure upon the stochastic production function or revenue function to ensure that is
strictly convex.

general preference structures, for example, generalized Schur-concave (Marshall

and Olkin, 1979; Chambers and Quiggin, 1998) preference functions.

A more signi�cant generalization is to proceed along the lines investigated

by Chambers and Quiggin (1992, 1996, 1997, 1998) and extend the analysis be-

yond the case of stochastic revenue or production functions as considered in the

present paper (as well as in most applied work on production under uncertainty)

to the Arrow-Debreu model in which production possibilities for state-contingent

commodities are described by technology sets. In this more general framework,

the only restriction on the technology required for the existence of a cost func-

tion is that its input sets be closed . The key advantage of this extension is that

if is strictly convex, its dual cost function will be smoothly differentiable

avoiding the potential nondifferentiability of that plagues the stochastic

production function technology . (As Chambers and Quiggin (1992, 1997) have

pointed out the stochastic production function technology is degenerate in the

sense that it leads to state-contingent output sets which are characterized by

�xed coefficients.) Chambers and Quiggin (1997) use such a state-contingent

20
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This is equivalent to assuming that there is no problem of moral hazard or adverse selection.

production model in the �nite-state case to analyze producer decision making

in the presence of forward and futures markets exploiting the smoothness of the

associated cost function to derive a range of arbitrage conditions and new results

on hedging.

To illustrate this point, consider the problem of multiple-peril crop insur-

ance as studied by (among others) Nelson and Loehman (1987) and Chambers

(1989) under the assumption that is smoothly differentiable. Assuming

that the stochastic factor, , is contractible , an insurance company can write

an insurance contract in which the net indemnity depends upon the

realization of the stochastic factor. Denote the net indemnity associated with

the realization of the stochastic factor as Then assuming that the insur-

ance company is risk-neutral, the socially optimal insurance contract solves the

following maximization problem:

Letting we obtain the following �rst-order
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The notation, is exact in the case where the state space is discrete. For the contin-
uous state-space case, this derivative should be interpreted as the Fréchet derivative of
evaluated at .

conditions for the socially optimal multiple-peril crop insurance problem:

for all

in the notation of complementary slackness .

Assuming that the farmer is strictly risk-averse, i.e., is strictly concave,

the above equality implies that a socially optimal multiple-peril crop insurance

policy stabilizes farmer income at which is determined as the implicit solution

to Substituting this result into the second expression then yields

that the optimal production pattern is determined by:

which is the production pattern which maximizes expected pro�t from farming.

Hence, in a very simple and straightforward fashion we are able to recon�rm

the Nelson and Loehman (1987) result that socially optimal crop insurance in

22
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7. Concluding Comments

This manifests Borch�s (1962) well-known rule for optimal risk sharing.

the absence of moral hazard and adverse selection involves full insurance for the

farmer while having the farmer produce at the point which maximizes expected

pro�t from farming. Other generalizations are straightforward and are left to

the interested reader.

State-contingent production under uncertainty, like production of commodities

differentiated in time and space, is merely a special case of a general multiple-

input, multiple-output technology. Hence, as we demonstrate above the duality

tools developed for the latter automatically apply to the former. This propo-

sition stated in this way appears self-evident, but the issue of whether duality

methods are applicable under uncertainty has remained shrouded in confusion

and con�icting claims. In this paper, it has been shown that provided input

sets are closed and nonempty, a well-behaved cost function can be derived from

any stochastic production or revenue function. The resulting cost function, in

turn, is always dual to a stochastic production structure exhibiting convexity

of input sets and free disposability of inputs. Hence, any stochastic produc-

tion structure possessing closed and nonempty input sets will be observationally
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equivalent for cost minimizers (and hence maximizers of the expected utility of

net returns) to a stochastic production structure possessing closed, convex, and

input disposable input sets.

Historically, the dual approach to economic analysis has proven a powerful

and tractable tool in the analysis of non-stochastic production problems yielding

many new insights and analytical results. The results of this paper suggest

that similar progress in the analysis of problems involving production under

uncertainty is possible.
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