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Abstract

This note shows that, under appropriate conditions, preferences may be locally approx-
imated by the linear utility or risk-neutral preference functional associated with a local

probability transformation.



1 Introduction

The expected-utility theory of choice under uncertainty provides a simple and tractable
model of choice under uncertainty, and has formed the basis of a large and valuable body
of economic analysis. However, there is a good deal of evidence to show that the expected-
utility model does not provide an adequate description of behavior under uncertainty. A
wide range of generalized models have been presented. The most influential class involves
the introduction of a transformation of probabilities into decision weights to complement
the transformation of outcomes into utilities (Kahneman and Tversky 1979, Quiggin 1982,
Yaari 1987).

A crucial issue in generalized expected utility theory is the extent to which results de-
rived in the expected utility framework can be carried ove.r Machina (1982) presented a
systematic basis for generalizations of expected utility theory by introducing the idea of
local utility functions, which allow general preferences to be approximated in the neigh-
borhood of a given distribution by an expected-utility functional. It is natural to ask
whether Machina’s local representation of general preferences has an analog in terms of
local probability transformations.

In this paper, we address this problem using the characterization of preferences under
uncertainty in terms of benefit functions, developed by Chambers and Quiggin (2000) and
Quiggin and Chambers (1998). Quiggin and Chambers show that the benefit function pro-
vides not only a complete representation of preferences but also a natural characterization
of risk premiums and of conditions such as constant absolute risk aversion. Because the
benefit function is defined for every risky prospect, considered as a state-contingent income
vector, it provides a natural starting point for the consideration of local approximations
to preference structures.

This note shows that, under appropriate conditions, preferences may be locally ap-
proximated by the linear utility or risk-neutral preference functional associated with a
local probability transformation. This idea is developed using a special case of the ben-
efit function, the translation function originally due to Blackorby and Donaldson (1980).

Alternative representations using the distance function are also described. Finally, some



concluding comments are offered.

2 Notation and background

We are concerned with preferences over state-contingent income or consumption vectors
represented as mappings from a state space £ to an outcome space Y C R. We focus on
the case where Q is a finite set {1...5}, and the space of random variables is thus Y* C §°.
Denote the S— dimensional vector of ones by 1 = (1,1,...1), and the unit simplex by
P CRY .

Preferences over Y are given by a strictly increasing, differentiable function W : Y°
— . Machina’s (1982) analysis is developed for preferences over spaces of cumulative
distribution functions. In order to extend a local utility function analysis to preferences
expressed in terms of random variables, it is necessary to restrict attention to functions W
satisfying symmetry conditions which ensure that any two random variables with the same
cumulative distribution function are judged equivalent. Let y <y’ mean that y and y’
have the same mean and that y is less risky than y’ in the sense of Rothschild and Stiglitz
(1970), when both the mean and the relative riskiness criterion are calculated with respect
to some given probability vector 7. A function W : ®° — R is said to be generalized Schur
concave with respect to 7w if y <y’ implies W (y) > W (y’). Generalized Schur-concavity
implies that, if y and y’ have the same probability distribution, y=<y’ and y’<y, so that
W(y) =W

The translation function, B : Y9 x ® — R, is defined by:

B(y,w)=max{8 € %t: W(y — 81) > w}

if W(y — 1) > w for some 3, and —oo otherwise (Blackorby and Donaldson 1980). The
translation function is a special case of the benefit function introduced by Luenberger
(1992), which is defined with an arbitrary vector g € ®° in place of 1.

The properties of the translation function are well known (Blackorby and Donaldson
1980; Luenberger 1992; Chambers, Chung, and Fire 1996; and Chambers and Quiggin

2000), and are presented in lemma form for later use:



Lemma 1: B(y,w) satisfies:

a) B(y,w) is nonincreasing in w and nondecreasing in y;

b) B(y +al,w) = B(y,w)+ a, a € R (the translation property);

¢) Bly,w)>0& W(y)>w, and Blw,y) =0« W(y) = w; and

d) If W is generalized Schur concave, then y <. y' = B(y,w) < B(y,w).

Two of these properties prove particularly important in what follows: Property 1.c
implies that B is a complete function representation of preferences. Property 1.b is cen-
tral to the dual relationship between the local utility functions and the local probability
transformations. In particular, for differentiable preferences, property 1.b implies

> Bslyw) =1,

s€Q
where subscripts on functions denote partial derivatives. Chambers and Quiggin (2002)
generalize this property to superdifferentiable preferences. The certainty equivalent is an
important canonical representation of preferences which is conveniently defined in terms

of the translation function as

e(y) = min{W :W(el)>W(y)}
= —BOW(y)).

No true loss of generality is involved in replacing W (y) by its transform e (y), and in what

follows we always do so, writing B (y.e) in place of B (y,w).

3 Local utility functions

We now consider the local representation of e in terms of a probability distribution 7,

assumed objectively given, and a family of local utility functions u (e;y).! A function

!This representation is more general than the local utility function u (e; /') defined by Machina (1982).
Machina’s representation incorporates the assumption of probabilistic sophistication, namely that if two
state-contingent income vectors y,y’ induce the same cumulative probability distribution I’ for the
objectively-given probability vector w%, then W (y) = W (y'). Generalized Schur-concavity with respect

to w0 is sufficient, but not necessary, for probabilistic sophistication.



u(e;y): R — R, is a local utility function for e at y if and only if, for all Ay

e(y+Ay) —e( ZW (Ys;¥) Ays + o||Ay]| .

The local utility function w (e;y) is determined in a neighborhood of the support of y

by the condition:
T (Y5 y) _ es(y)
T (YY) e (y)

Machina (1982) shows that, for any e, there exists a local utility function representation

Vs,t €S,

such that

and

S
ZWSU(ys;y) =e(y)

with the latter equality holding approximately in a neighborhood of y.
The local utility function can be derived from the translation function. By Lemma 1.c,

e(y + Ay) > e(y) if and only if

0 < B(y+dy.e(y)) )
= BOrAyer) - B.el)
= ZB y,e(y)) Ay, + of|Ay]|
- Z 0B: ey ”Ays oAyl
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This fact and the observation that

_es(y)
e (y)

implies that the local utility function can be written as

u'(ys;y) = W > e(y)



This normalization by the derivative of e (y) in the direction of 1, 3", e; (y), characterizes
marginal utility «'(y;y). As Machina (1988) notes, the local utility function at y is defined
up to an arbitrary additive constant, which may vary with y. In addition, all the local
utility functions may be scaled by a multiplicative constant, common to all distributions,
y,y such that e( y') > e(y).

By Lemma 1.b:

> mu(ysy) = Y Bs(y.e()D e(y)

Example 1 If preferences are consistent with expected utility maximization for some strictly
mcreasing u,

B (y.e(y)) = ;;‘75’(;)

for ally.

Example 2 Preferences are characterized by constant absolute risk aversion (Chambers

and Quiggin 2000) if for all y

e(y+61)=-e(y)+ 6.

es(y)

s

whence Y s es (y) = 1 implying that Bs(y.e (y)) = es (y) and hence v/ (ys;y) =

Machina’s definition is applicable to the case when e is Frechet differentiable. More
generally, the concept of a local utility function is applicable in the case when e has one-

sided directional Gateaux derivatives:

¢ (y;Ay) = lim

t—0+

{6 (y+tAy)—e (Y)}
. .

The methods of this paper can be adapted to that case by relying on the corresponding

Gateaux derivatives of the translation function

{B (y+tAy.e) — B (y,e)}

B’ (y,e;Ay)= lim

t—0+

t

evaluated at e = e (y).



4 The Local Probability Transformation

Wakker (1989) and others have noted the existence of a duality between utility func-
tions, which transform monetary outcomes into utilities, and functions which transform
probabilities into ‘decision weights’. Yaari’s (1987) version of rank-dependent utility with
linear utility makes this duality explicit. We now ask whether general preferences may be
approximated by a local version of a probability weighting function.

The most general local probability transformation is a mapping 7 associating to each
y € R, a vector of probabilities 7 (y) € P, such that, in a neighborhood of y, e (y+Ay) —
e (y) > 0 if and only if

s
Zﬂ's (y)Ays > 0.
s=1

Noting the requirement that > ¢ms = 1, the third line of (1) implies that

s (y) = Bs(y,e(y))

provides an appropriate local probability transformation. Preferences in a neighborhood

of any y may be locally approximated by a ‘corrected arithmetic mean’ of the form

S S
e(y+Ay)—e(y)=> e (y) Z s (y) Ays.

s=1

In the case of constant absolute risk-aversion, we have

S
Zes(y)zl

and the corrected arithmetic mean is the ordinary mean calculated with respect to 7 (y).

The local utility function is a mapping of R into itself, and it is desirable to have a
similarly compact local representation of probability transformations. The rank-dependent
approach provides such a representation, based on yj, the increasing rearrangement of y,
denoted by a subscript [], and such that y;; < yp) < ... < yig, and a known vector of ‘objec-
tive probabilities’ 7°. A local probability weighting function representing the probability
transformation 7 is a mapping ¢ (p;y), such that g(e;y) : [0,1] — [0,1] with ¢(0;y) =0
and ¢(1;y) =1, such that

S s—1
T (y) =4 (ZW%];Y> —q (ZW&;Y) -

i=1 i=



Since the value of the transformation function g is determined only at .S points in the unit
interval, some canonical choice is required. For our purposes, the simplest assumption is

that ¢ is piecewise linear.

5 Risk aversion

Having derived the local utility function and the local probability transformation, we turn
attention to the extent to which global preferences inherit the properties of the local trans-
formations. Machina’s (1982) central insight was that when all the local utility functions
shared certain properties, such as preservation of first-order or second-order stochastic
dominance, these properties were inherited by the global preference functional e. The
equivalent result on first-order stochastic dominance for fixed probability transformations
is proved by Quiggin (1982) and Chew, Karni and Safra (1987).

These issues may be addressed more directly by consideration of the local probability
transformation. For differentiable preferences generalized Schur concave with respect to

70 (Marshall and Olkin 1979), it is true that:

B;(y.e Bi(y.e
[ g ) _ ’“g )] (ys —ys) <0, s, ke
s k
for all y, e. From the definitions of the local utility function and local probability trans-

formation, this condition holds if and only if

(W (ys; ) — ¥ (yw; y)) (s — yi) <O
(Ws (y) 7 (Y)> (s — 30) < 0.

0 0
Mg Mg

The first of these conditions has the straightforward and well-known interpretation that
the local utility function must be concave (Machina 1982). The second condition becomes
more transparent with the observation that the local probability vector, = (y), supports
the decisionmaker’s indifference curve at y. Hence, it has a natural intepretation as a vector

of price-dependent demands consistent with the state-claim y. The second condition then

s (y) <

o < Q—E Cast in this context, the second condition is the

requires that if ys > yi then

generalization to generalized Schur concave preferences of the Peleg—Yaari (1975) result

7



characterizing risk-aversely efficient points over general convex choice sets. Because choice
over a differentiable convex set will lead such a decisionmaker to equate the slope of his

indifference curve to the choice set’s boundary, in equilibrium relative Peleg-Yaari efficiency

prices must equal ;rkg,)) for all s and k.

By the intermediate value theorem,

T (y) = q (cy) Ty — my

Il @
—
o
o~ Vo)
— —
o
v

= ¢ (gy)my
s—1 s
for some ¢ € LZI W([)ﬂ,t; W([)ﬂ] . Under the assumption of piecewise linearity, ¢’ is constant

s—1 s
> Moy 2 Ty | » and this allows us to obtain:
=1

on intervals of the form [
=1

Proposition 3 The following are equivalent:

(i) the local utility function u(;y) is concave for all y;

(i1) the local probability transformation function ¢(;y) is concave for all y;

(i) (W'(ys;¥) — w'(yk;¥)) (Us — y) < 0 for all s, k;

(iv) (% — W’;—(OY)) (ys — yr) <0 for all s,k; and

(v) preferences are generalized Schur-concave for w°,

Condition (i) is the characterization derived by Machina (1982). Condition (ii) is the
obvious analogue for the local probability transformation, since, for the Yaari model, risk-
aversion in the sense of generalized Schur-concavity is equivalent to concavity of the prob-
ability transformation (Chew, Karni and Safra 1987). Condition (iii) is trivially equivalent
to (i) and (iv) is similarly equivalent to (ii). Finally, (v) reflects the fact that conditions
(iii) and (iv) characterize the local property of generalized Schur-concavity for the two

representations.

6 Alternative Formulations

The translation function is only one of many possible alternative function representations
of preferences. It has the ‘nice’ property that its gradient in y is non-negative and always

sums to one. Thus, it is naturally and conveniently interpretable as a vector of probabilities.

8



However, the general procedure outlined here is applicable both for the more general benefit
function and for radial representations of preferences such as the distance function.? We

briefly illustrate by considering the distance function defined by

D (y.e)=sup {)\ : e(%) > e},

where we specifically restrict attention to y € §Ri Among other properties the distance
function is a complete function representation of preferences in the sense that e (y) > e &
D(y,e) > 1, and it is positively linearly homogeneous in y (Shephard 1970).
Because D is a complete function representation of preferences, e(y + Ay) > e(y) if
and only if
0<InD(y+Aye(y) —InD(y.e(y)).

Making a slight change of variables and the associated renormalizations of the distance
function and the certainty equivalent, we define
D*(Iny.e) = D(y.e)
e’ (Iny) = e(y).

This renormalization allows us to apply an exactly identical argument to that used in (1)

to identify the local utility function:

0 < InD"(Iny+Alnye(y))—InD" (Iny,e(y))

S dlnD* (Iny.e(y))
: ANlnys
; dlnys ny

+o||Alnyl|.

By parallel arguments used in establishing (1), we obtain the alternative local representa-
tion v (Iny;y) using the normalization > e (Iny) :

19lnD (Iny.e
T dlnys

v (Inysy) = ) Ze: (Iny).

OlnD*(Iny,e(y))

Fing. =1, an

By the positive linear homogeneity of the distance function, >7

exactly parallel argument to that used in defining the local probability structure implies

2Tn fact, it is applicable for all function representations of preferences.



that preferences in a neighborhood of Iny may be locally approximated by a a ‘corrected

geometric mean’:

s
€ (Iny+Alny) —e"(lny) = Zez (lny)ZWS (y)Alnys.
s=1

If preferences are generalized Schur concave, D is also generalized Schur concave for each
e (Chambers and Quiggin 2000) allowing the trivial extension of our main proposition to

this case.

7 Concluding comments

The central object of this paper has been the exploration of the links between local charac-
terizations of preferences based on concepts familiar from simple parametric representations
such as the expected-utility and Yaari dual models and those derived from translation and
distance functions. Because the translation function is a special case of the more gen-
eral benefit function, our results can be generalized by considering directions in Y other
than 1. This observations implies the existence of a wide range of local representations
of risk attitudes consistent, for example, with state-dependent preferences or uninsurable

background risk.

10



8 Reference List

Blackorby, Charles and David Donaldson. (1980). ” A Theoretical Treatment of Indices of
Absolute Inequality”, International Economic Review 21, 107-36.

Chambers, Robert G. and Role Fare. (1996). ”Benefit and Distance Functions”, Jour-
nal of Economic Theory 70, 407-419.

Chambers, Robert G . and John Quiggin. (2000). Uncertainty, Production, Choice and
Agency: The State-Contingent Approach, Cambridge University Press, New York.

Chambers, Robert G . and John Quiggin. (2002). ”Primal and Dual Approaches to
the Analysis of Risk Aversion, ” , University of Maryland, College Park and Dept of
Economics, Faculty of Economics and Commerce, Australian National University.

Chew, Soo Hong, Edi Karni, and Zvi Safra. (1987). "Risk Aversion in the Theory
of Expected Utility With Rank-Dependent Preferences”, Journal of Economic Theory 42,
370-81.

Kahneman, Daniel and Amos Tversky. (1979). ”Prospect Theory: an Analysis of
Decision Under Risk”, Econometrica 47, 263-91.

Luenberger, David .G. (1992). ”Benefit Functions and Duality”, Journal of Mathe-
matical Economics 21, 461-481.

Machina, Mark. (1982). ”’Expected Utility’ Analysis Without the Independence Ax-
iom”, Econometrica 50, 277-323.

Machina, Mark. (1988).’Cardinal properties of ’local utility functions”, in Munier,
Bertrand (ed.), Risk, Decision and Rationality, D . Reidel, Dirdrecht.

Marshall, A. and I. Olkin. (1979). Inequalities: Theory of Majorization and its Appli-
cations, Academic Press, New York.

Peleg, B. and Menahem Yaari. (1975). ” A Price Characterisation of Efficient Random
Variables”, Econometrica 43, 283-92.

Quiggin, John. (1982). ”A Theory of Anticipated Utility”, Journal of Economic Be-
havior and Organization 3, 323-43.

Quiggin, John and Robert G . Chambers. (1998). ”Risk Premiums and Benefit Mea-
sures for Generalized Expected Utility Theories”, Journal of Risk and Uncertainty 17,

11



121-37.

Rothschild, Michael and Joseph Stiglitz. (1970). ”Increasing Risk: I . A Definition”,
Journal of Economic Theory 2, 225-243.

Shephard, R.W . (1970). Theory of Cost and Production Functions, Princeton Univer-
sity Press, Princeton, NJ.

Wakker, Peter. (1989)."Transforming probabilities without violating stochastic domi-
nance’, 29-47 in E . Roskam (ed.), Mathematical Psychology in Progress, Springer, Berlin.

Yaari, Menahem. (1987). "The Dual Theory of Choice Under Risk”, Econometrica
55, 95-115

12



