Aldehyde dehydrogenase 2 family (mitochondrial), also known as ALDH2, is a human gene found on chromosome 12. This protein belongs to the aldehyde dehydrogenase family of proteins. Aldehyde dehydrogenase is the second enzyme of the major oxidative pathway of alcohol metabolism. Two major liver isoforms of aldehyde dehydrogenase, cytosolic and mitochondrial, can be distinguished by their electrophoretic mobilities, kinetic properties, and subcellular localizations. Most Caucasians have two major isozymes, while approximately 50% of East Asians have the cytosolic isozyme but not the mitochondrial isozyme. A remarkably higher frequency of acute alcohol intoxication among East Asians than among Caucasians could be related to the absence of a catalytically active form of the mitochondrial isozyme. The increased exposure to acetaldehyde in individuals with the catalytically inactive form may also confer greater susceptibility to many types of cancer. This gene encodes a mitochondrial isoform, which has a low Km for acetaldehydes, and is localized in mitochondrial matrix. Alternative splicing results in multiple transcript variants encoding distinct isoforms.
Aldehyde dehydrogenase X, mitochondrial is an enzyme that in humans is encoded by the ALDH1B1 gene.
This protein belongs to the aldehyde dehydrogenases family of proteins. Aldehyde dehydrogenase is the second enzyme of the major oxidative pathway of alcohol metabolism. This gene does not contain introns in the coding sequence. The variation of this locus may affect the development of alcohol-related problems.
Model organisms have been used in the study of ALDH1B1 function. A conditional knockout mouse line called Aldh1b1tm2a(EUCOMM)Wtsi was generated at the Wellcome Trust Sanger Institute. Male and female animals underwent a standardized phenotypic screen to determine the effects of deletion. Additional screens performed: - In-depth immunological phenotyping - in-depth bone and cartilage phenotyping
Aldehyde dehydrogenases (EC 1.2.1.3) are a group of enzymes that catalyse the oxidation (dehydrogenation) of aldehydes. To date, nineteen ALDH genes have been identified within the human genome. These genes participate in a wide variety of biological processes including the detoxification of exogenously and endogenously generated aldehydes.
Aldehyde dehydrogenase is a polymorphic enzyme responsible for the oxidation of aldehydes to carboxylic acids, which leave the liver and are metabolized by the body’s muscle and heart. There are three different classes of these enzymes in mammals: class 1 (low Km, cytosolic), class 2 (low Km, mitochondrial), and class 3 (high Km, such as those expressed in tumors, stomach, and cornea). In all three classes, constitutive and inducible forms exist. ALDH1 and ALDH2 are the most important enzymes for aldehyde oxidation, and both are tetrameric enzymes composed of 54kDA subunits. These enzymes are found in many tissues of the body but are at the highest concentration in the liver.
Do ya... wanna do some crack?
Do ya wanna drop a log?
Do ya prefer to pick your nose?
Or would ya rather mouse a hog?
The bathroom is a holy place
I can wack-off without disgrace
What! There's no paper? I don't care
I'll wipe my ass with my underwear
The bathroom is a holy place
I can wack-off without disgrace
There's so many games to play in here
Like "Bombs away in the hollow chair"
It's a place I can think
Projects chunks in the sink
So many things to do in there
You can't see me - so I don't care