|
This article has multiple issues. Please help improve it or discuss these issues on the talk page.
|
Ambiguity of information, in words, pictures, or other media, is the ability to express more than one interpretation. It is generally contrasted with vagueness, in that specific and distinct interpretations are permitted (although some may not be immediately apparent), whereas with information that is vague it is difficult to form any interpretation at the desired level of specificity.
Sir
John Tenniel's illustration of the
Caterpillar for
Lewis Carroll's
Alice's Adventures in Wonderland is noted for its ambiguous central figure, it would go against any idea that the artist has to pin point exactly what the picture is implying. The whole idea is to create your own concensus of the art.Eveyone has different eyes and, the artist had imagination far beyond the norm. The caterpillar could be the main focus or, the girl who can barely see over the mushroom. My thoughts are with the girl who looks timid however, so curious. What is going on in front of the girl could be more objectionable considering how young she is. In todays world the movie would not be easily accepted. Narrowing down ones thoughts of this artwork would be next to impossible. To conclude ambiguos is what the artists intended and, what a blessing it is to have an opinion. Carroll, Lewis.
The Nursery "Alice". Dover Publications (1966), p27.</ref>
Context may play a role in resolving ambiguity. For example the same piece of information may be ambiguous in one context and unambiguous in another.
The lexical ambiguity of a word or phrase contains in its having more than one meaning in the language to which the word belongs. "Meaning" hereby refers to whatever should be captured by a good dictionary. For instance, the word "bank" has several distinct lexical definitions, including "financial institution" and "edge of a river". Another example is as in apothecary. One could say "I bought herbs from the apothecary". This could mean you actually spoke to the apothecary (pharmacist) or went to the apothecary (pharmacy).
The context in which an ambiguous word is used often makes it evident which of the meanings is intended. If, for instance, someone says "I buried $100 in the bank", most people would not think you used a shovel to dig in the mud. However, some linguistic contexts do not provide sufficient information to disambiguate a used word. For example, "Biweekly" can mean "fortnightly" (once every two weeks – 26 times a year), OR "twice a week" (104 times a year). If "biweekly" is used in a conversation about a meeting schedule, it may be difficult to infer which meaning was intended.
Lexical ambiguity can be addressed by algorithmic methods that automatically associate the appropriate meaning with a word in context, a task referred to as Word Sense Disambiguation.
The use of multi-defined words requires the author or speaker to clarify their context, and sometimes elaborate on their specific intended meaning (in which case, a less ambiguous term should have been used). The goal of clear concise communication is that the receiver(s) have no misunderstanding about what was meant to be conveyed. An exception to this could include a politician whose "weasel words" and obfuscation are necessary to gain support from multiple constituents with mutually exclusive conflicting desires from their candidate of choice. Ambiguity is a powerful tool of political science.
More problematic are words whose senses express closely related concepts. “Good,” for example, can mean "useful" or "functional" (That’s a good hammer), "exemplary" (She’s a good student), "pleasing" (This is good soup), "moral (a good person versus the lesson to be learned from a story), "righteous", etc. " I have a good daughter" is not clear about which sense is intended. The various ways to apply prefixes and suffixes can also create ambiguity ("unlockable" can mean "capable of being unlocked" or "impossible to lock").
Syntactic ambiguity arises when a phrase can be parsed in more than one way. Such phrases can be assigned different interpretations because different grammatical structures can be assigned to the same string of words.[1] "He ate the cookies on the couch", for example, could mean that he ate those cookies which were on the couch (as opposed to those that were on the table), or it could mean that he was sitting on the couch when he ate the cookies.
Spoken language can contain many more types of ambiguities, where there is more than one way to compose a set of sounds into words, for example "ice cream" and "I scream". Such ambiguity is generally resolved according to the context. A mishearing of such, based on incorrectly resolved ambiguity, is called a mondegreen.
Semantic ambiguity arises when a word or concept has an inherently diffuse meaning based on widespread or informal usage. This is often the case, for example, with idiomatic expressions whose definitions are rarely or never well-defined, and are presented in the context of a larger argument that invites a conclusion.
For example, "You could do with a new automobile. How about a test drive?" The clause "You could do with" presents a statement with such wide possible interpretation as to be essentially meaningless.[citation needed] Lexical ambiguity is contrasted with semantic ambiguity. The former represents a choice between a finite number of known and meaningful context-dependent interpretations. The latter represents a choice between any number of possible interpretations, none of which may have a standard agreed-upon meaning. This form of ambiguity is closely related to vagueness.
Linguistic ambiguity can be a problem in law (see Ambiguity (law)), because the interpretation of written documents and oral agreements is often of paramount importance.
Philosophers (and other users of logic) spend a lot of time and effort searching for and removing (or intentionally adding) ambiguity in arguments, because it can lead to incorrect conclusions and can be used to deliberately conceal bad arguments. For example, a politician might say "I oppose taxes which hinder economic growth", an example of a glittering generality. Some will think he opposes taxes in general, because they hinder economic growth. Others may think he opposes only those taxes that he believes will hinder economic growth. In writing, the sentence can be rewritten to reduce possible misinterpretation, either by adding a comma after "taxes" (to convey the first sense) or by changing "which" to "that" (to convey the second sense), or by rewriting it in other ways. The devious politician hopes that each constituent will interpret the statement in the most desirable way, and think the politician supports everyone's opinion. However, the opposite can also be true - An opponent can turn a positive statement into a bad one, if the speaker uses ambiguity (intentionally or not). The logical fallacies of amphiboly and equivocation rely heavily on the use of ambiguous words and phrases.
In Continental philosophy (particularly phenomenology and existentialism), there is much greater tolerance of ambiguity, as it is generally seen as an integral part of the human condition. Martin Heidegger argued that the relation between the subject and object is ambiguous, as is the relation of mind and body, and part and whole.[2] In Heidegger's phenomenology, Dasein is always in a meaningful world, but there is always an underlying background for every instance of signification. Thus, although some things may be certain, they have little to do with Dasein's sense of care and existential anxiety, e.g., in the face of death. In calling his work Being and Nothingness an "essay in phenomenological ontology" Jean-Paul Sartre follows Heidegger in defining the human essence as ambiguous, or relating fundamentally to such ambiguity. Simone de Beauvoir tries to base an ethics on Heidegger's and Sartre's writings (The Ethics of Ambiguity), where she highlights the need to grapple with ambiguity: "as long as philosophers and they [men] have thought, most of them have tried to mask it...And the ethics which they have proposed to their disciples has always pursued thre same goal. It has been a matter of eliminating the ambiguity by making oneself pure inwardness or pure externality, by escaping from the sensible world or being engulfed by it, by yielding to eternity or enclosing oneself in the pure moment.".[3] Ethics cannot be based on the authoritative certainty given by mathematics and logic, or prescribed directly from the empirical findings of science. She states: "Since we do not succeed in fleeing it, let us therefore try to look the truth in the face. Let us try to assume our fundamental ambiguity. It is in the knowledge of the genuine conditions of our life that we must draw our strength to live and our reason for acting.".[4] Other continental philosophers suggest that concepts such as life, nature, and sex are ambiguous.[5] Recently, Corey Anton has argued that we cannot be certain what is separate from or unified with something else: language, he asserts, divides what is not in fact separate.[6] Following Ernest Becker, he argues that the desire to 'authoritatively disambiguate' the world and existence has led to numerous ideologies and historical events such as genocide. On this basis, he argues that ethics must focus on 'dialectically integrating opposites' and balancing tension, rather than seeking a priori validation or certainty. Like the existentialists and phenomenologists, he sees the ambiguity of life as the basis of creativity.[7]
In literature and rhetoric, ambiguity can be a useful tool. Groucho Marx’s classic joke depends on a grammatical ambiguity for its humor, for example: "Last night I shot an elephant in my pajamas. How he got in my pajamas, I’ll never know". Songs and poetry often rely on ambiguous words for artistic effect, as in the song title "Don’t It Make My Brown Eyes Blue" (where "blue" can refer to the color, or to sadness).
In narrative, ambiguity can be introduced in several ways: motive, plot, character. F. Scott Fitzgerald uses the latter type of ambiguity with notable effect in his novel The Great Gatsby.
All religions debate the orthodoxy or heterodoxy of ambiguity. Christianity and Judaism employ the concept of paradox synonymously with 'ambiguity'. Ambiguity within Christianity[8] (and other religions) is resisted by the conservatives and fundamentalists, who regard the concept as equating with 'contradiction'. Non-fundamentalist Christians and Jews endorse Rudolf Otto's description of the sacred as 'mysterium tremendum et fascinans', the awe-inspiring mystery which fascinates humans.
Metonymy involves the use of the name of a subcomponent part as an abbreviation, or jargon, for the name of the whole object (for example "wheels" to refer to a car, or "flowers" to refer to beautiful offspring, an entire plant, or a collection of blooming plants). In modern vocabulary critical semiotics,[9] metonymy encompasses any potentially ambiguous word substitution that is based on contextual contiguity (located close together), or a function or process that an object performs, such as "sweet ride" to refer to a nice car. Metonym miscommunication is considered a primary mechanism of linguistic humour.[10]
In sociology and social psychology, the term "ambiguity" is used to indicate situations that involve uncertainty. An increasing amount of research is concentrating on how people react and respond to ambiguous situations. Much of this focuses on ambiguity tolerance. A number of correlations have been found between an individual’s reaction and tolerance to ambiguity and a range of factors.
Apter and Desselles (2001)[11] for example, found a strong correlation with such attributes and factors like a greater preference for safe as opposed to risk-based sports, a preference for endurance-type activities as opposed to explosive activities, a more organized and less casual lifestyle, greater care and precision in descriptions, a lower sensitivity to emotional and unpleasant words, a less acute sense of humor, engaging a smaller variety of sexual practices than their more risk-comfortable colleagues, a lower likelihood of the use of drugs, pornography and drink, a greater likelihood of displaying obsessional behavior.
In the field of leadership David Wilkinson (2006)[12] found strong correlations between an individual leader's reaction to ambiguous situations and the Modes of Leadership they use, the type of creativity, Kirton (2003)[13] and how they relate to others.
In music, pieces or sections which confound expectations and may be or are interpreted simultaneously in different ways are ambiguous, such as some polytonality, polymeter, other ambiguous meters or rhythms, and ambiguous phrasing, or (Stein 2005, p. 79) any aspect of music. The music of Africa is often purposely ambiguous. To quote Sir Donald Francis Tovey (1935, p. 195), “Theorists are apt to vex themselves with vain efforts to remove uncertainty just where it has a high aesthetic value.”
In visual art, certain images are visually ambiguous, such as the Necker cube, which can be interpreted in two ways. Perceptions of such objects remain stable for a time, then may flip, a phenomenon called multistable perception. The opposite of such ambiguous images are impossible objects.
Pictures or photographs may also be ambiguous at the semantic level: the visual image is unambiguous, but the meaning and narrative may be ambiguous: is a certain facial expression one of excitement or fear, for instance?
Some languages have been created with the intention of avoiding ambiguity, especially lexical ambiguity. Lojban and Loglan are two related languages which have been created with this in mind, focusing chiefly on syntactic ambiguity as well. The languages can be both spoken and written. These languages are intended to provide a greater technical precision over big natural languages, although historically, such attempts at language improvement have been criticized. Languages composed from many diverse sources contain much ambiguity and inconsistency. The many exceptions to syntax and semantic rules are time-consuming and difficult to learn.
Mathematical notation, widely used in physics and other sciences, avoids many ambiguities compared to expression in natural language. However, for various reasons, several lexical, syntactic and semantic ambiguities remain.
The ambiguity in the style of writing a function should not be confused with a multivalued function, which can (and should) be defined in a deterministic and unambiguous way. Several special functions still do not have established notations. Usually, the conversion to another notation requires to scale the argument and/or the resulting value; sometimes, the same name of the function is used, causing confusions. Examples of such underestablished functions:
Ambiguous expressions often appear in physical and mathematical texts. It is common practice to omit multiplication signs in mathematical expressions. Also, it is common, to give the same name to a variable and a function, for example, Failed to parse (Missing texvc executable; please see math/README to configure.): f=f(x) . Then, if one sees Failed to parse (Missing texvc executable; please see math/README to configure.): f=f(y+1) , there is no way to distinguish, does it mean Failed to parse (Missing texvc executable; please see math/README to configure.): f=f(x)
multiplied by Failed to parse (Missing texvc executable; please see math/README to configure.): (y+1)
, or function Failed to parse (Missing texvc executable; please see math/README to configure.): f
evaluated at argument equal to Failed to parse (Missing texvc executable; please see math/README to configure.): (y+1)
. In each case of use of such notations, the reader is supposed to be able to perform the deduction and reveal the true meaning.
Creators of algorithmic languages try to avoid ambiguities. Many algorithmic languages (C++, Fortran) require the character * as symbol of multiplication. The language Mathematica allows the user to omit the multiplication symbol, but requires square brackets to indicate the argument of a function; square brackets are not allowed for grouping of expressions. Fortran, in addition, does not allow use of the same name (identifier) for different objects, for example, function and variable; in particular, the expression f=f(x) is qualified as an error.
The order of operations may depend on the context. In most programming languages, the operations of division and multiplication have equal priority and are executed from left to right. Until the last century, many editorials assumed that multiplication is performed first, for example, Failed to parse (Missing texvc executable; please see math/README to configure.): a/bc
is interpreted as Failed to parse (Missing texvc executable; please see math/README to configure.): a/(bc)
- in this case, the insertion of parentheses is required when translating the formulas to an algorithmic language. In addition, it is common to write an argument of a function without parenthesis, which also may lead to ambiguity.
Sometimes, one uses italics letters to denote elementary functions. In the scientific journal style, the expression Failed to parse (Missing texvc executable; please see math/README to configure.): s i n \alpha
means product of variables Failed to parse (Missing texvc executable; please see math/README to configure.): s , Failed to parse (Missing texvc executable; please see math/README to configure.): i , Failed to parse (Missing texvc executable; please see math/README to configure.): n
and
Failed to parse (Missing texvc executable; please see math/README to configure.): \alpha , although in a slideshow, it may mean Failed to parse (Missing texvc executable; please see math/README to configure.): \sin[\alpha] .
Comma in subscripts and superscripts sometimes is omitted; it is also ambiguous notation. If it is written Failed to parse (Missing texvc executable; please see math/README to configure.): T_{mnk} , the reader should guess from the context, does it mean a single-index object, evaluated while the subscript is equal to product of variables Failed to parse (Missing texvc executable; please see math/README to configure.): m , Failed to parse (Missing texvc executable; please see math/README to configure.): n
and Failed to parse (Missing texvc executable; please see math/README to configure.): k
, or it is indication to a three-valent tensor. The writing of Failed to parse (Missing texvc executable; please see math/README to configure.): T_{mnk}
instead of Failed to parse (Missing texvc executable; please see math/README to configure.): T_{m,n,k}
may mean that the writer either is stretched in space (for example, to reduce the publication fees, or aims to increase number of publications without considering readers. The same may apply to any other use of ambiguous notations.
Subscripts are also used to denote the argument to a function, as in Failed to parse (Missing texvc executable; please see math/README to configure.): F_{x} .
Failed to parse (Missing texvc executable; please see math/README to configure.): \sin^2\alpha/2\, , which could be understood to mean either Failed to parse (Missing texvc executable; please see math/README to configure.): (\sin(\alpha/2))^2\,
or Failed to parse (Missing texvc executable; please see math/README to configure.): (\sin(\alpha))^2/2\,
. In addition, Failed to parse (Missing texvc executable; please see math/README to configure.): \sin^2(x)
may mean Failed to parse (Missing texvc executable; please see math/README to configure.): \sin(\sin(x))
, as Failed to parse (Missing texvc executable; please see math/README to configure.): \exp^2(x)
means Failed to parse (Missing texvc executable; please see math/README to configure.): \exp(\exp(x))
(see tetration).
Failed to parse (Missing texvc executable; please see math/README to configure.): ~\sin^{-1} \alpha , which by convention means Failed to parse (Missing texvc executable; please see math/README to configure.): ~\arcsin(\alpha) ~ , though it might be thought to mean Failed to parse (Missing texvc executable; please see math/README to configure.): (\sin(\alpha))^{-1}\,
since Failed to parse (Missing texvc executable; please see math/README to configure.): ~\sin^{n} \alpha
means Failed to parse (Missing texvc executable; please see math/README to configure.): (\sin(\alpha))^{n}\,
.
Failed to parse (Missing texvc executable; please see math/README to configure.): a/2b\, , which arguably should mean Failed to parse (Missing texvc executable; please see math/README to configure.): (a/2)b\,
but would commonly be understood to mean Failed to parse (Missing texvc executable; please see math/README to configure.): a/(2b)\,
It is common to define the coherent states in quantum optics with Failed to parse (Missing texvc executable; please see math/README to configure.): ~|\alpha\rangle~
and states with fixed number of photons with Failed to parse (Missing texvc executable; please see math/README to configure.): ~|n\rangle~
. Then, there is an "unwritten rule": the state is coherent if there are more Greek characters than Latin characters in the argument, and Failed to parse (Missing texvc executable; please see math/README to configure.): ~n~ photon state if the Latin characters dominate. The ambiguity becomes even worse, if Failed to parse (Missing texvc executable; please see math/README to configure.): ~|x\rangle~
is used for the states with certain value of the coordinate, and Failed to parse (Missing texvc executable; please see math/README to configure.): ~|p\rangle~
means the state with certain value of the momentum, which may be used in books on quantum mechanics. Such ambiguities easy lead to confusions, especially if some normalized adimensional, dimensionless variables are used. Expression Failed to parse (Missing texvc executable; please see math/README to configure.): |1\rangle
may mean a state with single photon, or the coherent state with mean amplitude equal to 1, or state with momentum equal to unity, and so on. The reader is supposed to guess from the context.
Some physical quantities do not yet have established notations; their value (and sometimes even dimension, as in the case of the Einstein coefficients) depends on the system of notations. Many terms are ambiguous. Each use of an ambiguous term should be preceded by the definition, suitable for a specific case. Just like Ludwig Wittgenstein states in Tractatus Logico-Philosophicus: "... Only in the context of a proposition has a name meaning." [15]
A highly confusing term is gain. For example, the sentence "the gain of a system should be doubled", without context, means close to nothing.
It may mean that the ratio of the output voltage of an electric circuit to the input voltage should be doubled.
It may mean that the ratio of the output power of an electric or optical circuit to the input power should be doubled.
It may mean that the gain of the laser medium should be doubled, for example, doubling the population of the upper laser level in a quasi-two level system (assuming negligible absorption of the ground-state).
The term intensity is ambiguous when applied to light. The term can refer to any of irradiance, luminous intensity, radiant intensity, or radiance, depending on the background of the person using the term.
Also, confusions may be related with the use of atomic percent as measure of concentration of a dopant, or resolution of an imaging system, as measure of the size of the smallest detail which still can be resolved at the background of statistical noise. See also Accuracy and precision and its talk.
The Berry paradox arises as a result of systematic ambiguity in the meaning of terms such as "definable" or "nameable". Terms of this kind give rise to vicious circle fallacies. Other terms with this type of ambiguity are: satisfiable, true, false, function, property, class, relation, cardinal, and ordinal.[16]
In mathematics and logic, ambiguity can be considered to be an underdetermined system (of equations or logic) – for example, Failed to parse (Missing texvc executable; please see math/README to configure.): X=Y
leaves open what the value of X is – while its opposite is a self-contradiction, also called inconsistency, paradoxicalness, or oxymoron, in an overdetermined system – such as Failed to parse (Missing texvc executable; please see math/README to configure.): X=2, X=3
, which has no solution – see also underdetermination.
Logical ambiguity and self-contradiction is analogous to visual ambiguity and impossible objects, such as the Necker cube and impossible cube, or many of the drawings of M. C. Escher.[17]
Ambiguity can be used as a pedagogical trick, to force students to reproduce the deduction by themselves. Some textbooks[18] give the same name to the function and to its Fourier transform:
- Failed to parse (Missing texvc executable; please see math/README to configure.): ~f(\omega)=\int f(t) \exp(i\omega t) {\rm d}t
. Rigorously speaking, such an expression requires that Failed to parse (Missing texvc executable; please see math/README to configure.): ~ f=0 ~
even if function Failed to parse (Missing texvc executable; please see math/README to configure.): ~ f ~
is a self-Fourier function, the expression should be written as
Failed to parse (Missing texvc executable; please see math/README to configure.): ~f(\omega)=\frac{1}{\sqrt{2\pi}}\int f(t) \exp(i\omega t) {\rm d}t
- however, it is assumed that
the shape of the function (and even its norm Failed to parse (Missing texvc executable; please see math/README to configure.): \int |f(x)|^2 {\rm d}x ) depend on the character used to denote its argument. If the Greek letter is used, it is assumed to be a Fourier transform of another function, The first function is assumed, if the expression in the argument contains more characters Failed to parse (Missing texvc executable; please see math/README to configure.): ~t~
or Failed to parse (Missing texvc executable; please see math/README to configure.): ~\tau~
, than characters Failed to parse (Missing texvc executable; please see math/README to configure.): ~\omega~ , and the second function is assumed in the opposite case. Expressions like Failed to parse (Missing texvc executable; please see math/README to configure.): ~f(\omega t)~
or Failed to parse (Missing texvc executable; please see math/README to configure.): ~f(y)~
contain symbols Failed to parse (Missing texvc executable; please see math/README to configure.): ~t~
and Failed to parse (Missing texvc executable; please see math/README to configure.): ~\omega~
in equal amounts; they are ambiguous and should be avoided in serious deduction.
- ^ Kroeger, Paul (2005). Analysing Grammar: An Introduction. Cambridge: Cambridge University Press. pp. 26–27. ISBN 978-0-521-01653-7.
- ^ Heidegger, Martin. "The Origin of the Work of Art". Poetry, Language, Thought. Trans. Albert Hofstadter. NY: Harper Collins, 1971, pg. 18.
- ^ de Beauvoir, Simone. The Ethics of Ambiguity. Trans. Bernard Frechtman. New York: Citadel Press, 1976 [1948], pg. 8.
- ^ de Beauvoir, Ethics, pg. 9.
- ^ Foucault, Michel. The History of Sexuality, An Introduction (Vol. 1). Trans Robert Hurley. New York: Vintage Books, 1978.
- ^ Anton, Corey. Sources of Significance: Worldly Rejuvenation and Neo-Stoic Heroism. West Lafayette: Purdue University Press, 2010, pg. 35-63.
- ^ Anton, Corey. "Authoritative Disambiguation"[1]. Professoranton, 2009.
- ^ Living With Ambiguity
- ^ CSI: Sim8
- ^ Veale, Tony (2003): "Metaphor and Metonymy: The Cognitive Trump-Cards of Linguistic Humor"[2]
- ^ in Motivational Styles in Everyday life: A guide to reversal Theory. M.J. Apter (ed) (2001) APA Books
- ^ Wilkinson, D.J. (2006) The Ambiguity Advantage: What great leaders are great at. New York Palgrave Macmillan.
- ^ Kirton, M.J. (2003)Adaption-Innovation: In the Context of Diversity and Change. Routledge.
- ^ a b M.Abramovits, I.Stegun. Handbook on mathematical functions
- ^ Wittgenstein, Ludwig (1999). Tractatus Logico-Philosophicus. Dover Publications Inc.. p. 39. ISBN 0-486-40445-5.
- ^ Russell/Whitehead, Principia Mathematica
- ^ Goldstein, Laurence (1996). "Reflexivity, Contradiction, Paradox and M. C. Escher". Leonardo (The MIT Press) 29 (4): 299–308. DOI:10.2307/1576313. JSTOR 1576313
- ^ H. Haug, S. Koch. Quantum Theory of the Optical and Electronic Properties of Semiconductors, http://www.allbookstores.com/book/9812387560
|
|
Overview
|
|
Academic
areas |
|
|
Foundational
concepts |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|