- published: 26 Jan 2011
- views: 5112
- author: Nicholas Vrousalis
2:44
G. A. Cohen - Alfred Tarski
Gerald (Jerry) Cohen was a Marxist political philosopher. He was Chichele Professor of Soc...
published: 26 Jan 2011
author: Nicholas Vrousalis
G. A. Cohen - Alfred Tarski
Gerald (Jerry) Cohen was a Marxist political philosopher. He was Chichele Professor of Social and Political Theory at Oxford and subsequently Quain Professor...
- published: 26 Jan 2011
- views: 5112
- author: Nicholas Vrousalis
4:33
Tarski's semantic theory of truth
Latest iteration of this presentation. I fear it will not be the last....
published: 27 Mar 2012
author: Frege100
Tarski's semantic theory of truth
Latest iteration of this presentation. I fear it will not be the last.
- published: 27 Mar 2012
- views: 770
- author: Frege100
7:57
ALFRED TARSKI
KABOOM! ....and also Math Project!...
published: 10 Jan 2012
author: Bradley Wilder
ALFRED TARSKI
KABOOM! ....and also Math Project!
- published: 10 Jan 2012
- views: 428
- author: Bradley Wilder
8:38
(PP 1.1) Measure theory: Why measure theory - The Banach-Tarski Paradox
A playlist of the Probability Primer series is available here: http://www.youtube.com/view...
published: 20 Apr 2011
author: mathematicalmonk
(PP 1.1) Measure theory: Why measure theory - The Banach-Tarski Paradox
A playlist of the Probability Primer series is available here: http://www.youtube.com/view_play_list?p=17567A1A3F5DB5E4 You can skip the measure theory (Sect...
- published: 20 Apr 2011
- views: 31850
- author: mathematicalmonk
13:33
Using Tarski's World.mov
How to use the Tarski's World program for Language Proof and Logic....
published: 22 Jan 2013
author: Ian Schnee
Using Tarski's World.mov
How to use the Tarski's World program for Language Proof and Logic.
- published: 22 Jan 2013
- views: 367
- author: Ian Schnee
3:03
# 2 What is Truth? Part 1
What is Truth? Part 1. Jourdain's paradox and the need for experiential content....
published: 16 Nov 2010
author: dfpolis
# 2 What is Truth? Part 1
What is Truth? Part 1. Jourdain's paradox and the need for experiential content.
- published: 16 Nov 2010
- views: 770
- author: dfpolis
4:28
A Logical Approach
For as long as Wioleta Jaworska can remember—even back to grammar school— she has placed a...
published: 02 Jul 2009
author: CUNYBMCC
A Logical Approach
For as long as Wioleta Jaworska can remember—even back to grammar school— she has placed a high value on logic. Its always been the main theme in my critical...
- published: 02 Jul 2009
- views: 2355
- author: CUNYBMCC
46:32
So close, no matter how far
Wahrheit als Übereinstimmung mit der Realität. Wie läßt sich diese Übereinstimmung (Korres...
published: 25 Sep 2013
So close, no matter how far
Wahrheit als Übereinstimmung mit der Realität. Wie läßt sich diese Übereinstimmung (Korrespondenz) explizieren?
Definition des Aristoteles. Sie gilt als erste Fassung der Korrespondenztheorie der Wahrheit. Die Korrespondenztheorien gehen davon aus, daß Wahrheit eine Sprache-Welt-Beziehung ist. Ein Satz ist wahr, wenn die von ihm aufgestellte Behauptung mit einer Situation in der Welt (auch: Sachverhalt, Tatsache) übereinstimmt. Eine präzise Formulierung der Wahrheitsbedingung eines Satzes lieferte Alfred Tarski ("Die semantische Konzeption der Wahrheit und die Grundlagen der Semantik").
"P" ist wahr genau dann, wenn P.
"P" steht für den Namen eines Satzes, bezeichnet also nicht etwa den 16.Buchstaben des Alphabets.
Beispiel: [Der Satz] "Schnee ist weiß" ist wahr genau dann, wenn Schnee weiß ist.
Wie man erkennt, ist dies keine Definition der Wahrheit sondern gibt das Kriterium an, anhand dessen festgestellt werden kann, wann das Zusprechen von Wahrheit korrekt ist. Tarski verallgemeinert diese Äquivalenz zum berühmten Tarski-Schema. Der Name des Satzes sei X, die Satzaussage selbst wird für die Variable "p" eingesetzt und muß eine Aussage der Sprache sein, auf die sich das Wort wahr bezieht.
(T) X ist wahr genau dann, wenn p.
Beispiel für S1: "Snow is white" ergibt ins Tarski-Schema eingesetzt:
S1 ist wahr genau dann, wenn Schnee weiß ist.
Das Problem der Korrespondenztheorie ist, wie festgestellt wird, daß das Kriterium tatsächlich erfüllt ist. Bei einfachen Sachverhalten ("Dieses Haus hat vier Fenster") kann man nachschauen und zählen. Doch bei All-Aussagen ("Schnee ist weiß" ist eine verkappte All-Aussage) oder bei Tatsachen, die sich auf die Vergangenheit beziehen, ("Immanuel Kant wurde 1724 in Königsberg geboren") ist diese einfache Verifikation unmöglich. Der Nachteil der Korrespondenztheorie ist, daß sie sich auf etwas außerhalb der Sprache Liegendes bezieht. Dies versucht die Kohärenztheorie zu vermeiden. [Bertrand Russell, Alfred Tarski, Ludwig Wittgenstein]
Ich persönlich bin Anhänger des sema-semiotischen Ansatzes meines verehrten Prüfers an der Ruhr-Uni, Herrn Prof. Udo.L. Figge.
Als Schalker aber gehe ich vom eineindeutigen Libudaschen Axiom aus: Die Wahrheit liegt immer auf dem Platz. In diesem Sinne. Sieg oder Blut am Stiefel.
Enjoy the Video and yourselves.
GLÜCK AUF !!
- published: 25 Sep 2013
- views: 4
2:49
Primitive notion
All about Primitive notion. This is another Text 2 Audio transformation using Flite. Below...
published: 26 Sep 2013
Primitive notion
All about Primitive notion. This is another Text 2 Audio transformation using Flite. Below is the transcript for the recording:
In mathematics, logic, and formal systems, a primitive notion is an undefined concept. In particular, a primitive notion is not defined in terms of previously defined concepts, but is only motivated informally, usually by an appeal to intuition and everyday experience. In an axiomatic theory or other formal system, the role of a primitive notion is analogous to that of axiom. In axiomatic theories, the primitive notions are sometimes said to be "defined" by one or more axioms, but this can be misleading. Formal theories cannot dispense with primitive notions, under pain of infinite regress. Alfred Tarski explained the role of primitive notions as follows: When we set out to construct a given discipline, we distinguish, first of all, a certain small group of expressions of this discipline that seem to us to be immediately understandable; the expressions in this group we call PRIMITIVE TERMS or UNDEFINED TERMS, and we employ them without explaining their meanings. At the same time we adopt the principle: not to employ any of the other expressions of the discipline under consideration, unless its meaning has first been determined with the help of primitive terms and of such expressions of the discipline whose meanings have been explained previously. The sentence which determines the meaning of a term in this way is called a DEFINITION... In axiomatic set theory the fundamental concept of set is an example of a primitive notion. As Mary Tiles wrote: 'definition' of 'set' is less a definition than an attempt at explication of something which is being given the status of a primitive, undefined, term. As evidence, she quotes Felix Hausdorff: "A set is formed by the grouping together of single objects into a whole. A set is a plurality thought of as a unit." When an axiomatic system begins with its axioms, the primitive notions may not be explicitly stated. Susan Haak wrote, "A set of axioms is sometimes said to give an implicit definition of its primitive terms." Examples. In: Naive set theory, the empty set is a primitive notion. Peano arithmetic, the successor function and the number zero are primitive notions. Axiomatic systems, the primitive notions will depend upon the set of axioms chosen for the system. This was discussed by Alessandro Padoa at the International Congress of Mathematicians in Paris in 1900. Euclidean geometry, under Hilbert's axiom system the primitive notions are point, line, plane, congruence, betweeness and incidence. Euclidean geometry, under Peano's axiom system the primitive notions are point, segment and motion. Philosophy of mathematics, Bertrand Russell considered the "indefinables of mathematics" to build the case for logicism in his book The Principles of Mathematics .
- published: 26 Sep 2013
- views: 0
7:02
MOON|ERA, UNA RISCRITTURA DI ORLANDO FURIOSO
MOON|ERA, UNA RISCRITTURA DI ORLANDO FURIOSO (2007) Testi originali e musica di Luca Rizza...
published: 14 Aug 2012
author: Prufrock spa
MOON|ERA, UNA RISCRITTURA DI ORLANDO FURIOSO
MOON|ERA, UNA RISCRITTURA DI ORLANDO FURIOSO (2007) Testi originali e musica di Luca Rizzatello Opere citate: Neil A. Armstrong, Biography Jules Verne, De la...
- published: 14 Aug 2012
- views: 53
- author: Prufrock spa
5:41
Godel's theorem...what it actually says.
A very brief outline of what Godel's theorem actually says....
published: 11 Apr 2013
author: IndianHeathen1982
Godel's theorem...what it actually says.
A very brief outline of what Godel's theorem actually says.
- published: 11 Apr 2013
- views: 108
- author: IndianHeathen1982
2:24
Sumer-magyar rokonság? - A szavak kiejtése
...
published: 30 May 2013
author: Történelemtanárok Egylete
Sumer-magyar rokonság? - A szavak kiejtése
- published: 30 May 2013
- views: 456
- author: Történelemtanárok Egylete
Youtube results:
2:30
Polish notation
All about Polish notation. This is another Text 2 Audio transformation using Flite. Below ...
published: 26 Sep 2013
Polish notation
All about Polish notation. This is another Text 2 Audio transformation using Flite. Below is the transcript for the recording:
Polish notation, also known as Polish prefix notation or simply prefix notation, is a form of notation for logic, arithmetic, and algebra. Its distinguishing feature is that it places operators to the left of their operands. If the arity of the operators is fixed, the result is a syntax lacking parentheses or other brackets that can still be parsed without ambiguity. The Polish logician Jan Łukasiewicz invented this notation in 1924 in order to simplify sentential logic. The term Polish notation is sometimes taken to also include Polish postfix notation, or Reverse Polish notation, in which the operator is placed after the operands. When Polish notation is used as a syntax for mathematical expressions by interpreters of programming languages, it is readily parsed into abstract syntax trees and can, in fact, define a one-to-one representation for the same. Because of this, Lisp and related programming languages define their entire syntax in terms of prefix notation . Here is a quotation from a paper by Jan Łukasiewicz, "Remarks on Nicod's Axiom and on "Generalizing Deduction", page 180."I came upon the idea of a parenthesis-free notation in 1924. I used that notation for the first time in my article Łukasiewicz, p. 610, footnote." The reference cited by Jan Łukasiewicz above is apparently a lithographed report in Polish. The referring paper by Łukasiewicz Remarks on Nicod's Axiom and on "Generalizing Deduction" was reviewed by H. A. Pogorzelski in the Journal of Symbolic Logic" in 1965. Alonzo Church mentions this notation in his classic book on mathematical logic as worthy of remark in notational systems even contrasted to Whitehead and Russell's logical notational exposition and work in Principia Mathematica. In Łukasiewicz 1951 book, Aristotle's Syllogistic from the Standpoint of Modern Formal Logic, he mentions that the principle of his notation was to write the functors before the arguments to avoid brackets and that he had employed his notation in his logical papers since 1929. He then goes on to cite, as an example, a 1930 paper he wrote with Alfred Tarski on the sentential calculus. While no longer used much in logic, Polish notation has since found a place in computer science.
- published: 26 Sep 2013
- views: 0
37:51
Dialetheism 2a - the Liar paradox
It's not worth considering dialetheism unless we can point to a few things that might be c...
published: 27 Mar 2013
author: Kane B
Dialetheism 2a - the Liar paradox
It's not worth considering dialetheism unless we can point to a few things that might be considered true contradictions. The most obvious candidates are the ...
- published: 27 Mar 2013
- views: 135
- author: Kane B
9:06
Using Scientific Definitions: Evolution and Thermodynamics
If you want to understand science or apply scientific principles, you must learn and use t...
published: 25 Mar 2007
author: TheFallibleFiend
Using Scientific Definitions: Evolution and Thermodynamics
If you want to understand science or apply scientific principles, you must learn and use the scientific definitions of terms. Lay definitions usually differ ...
- published: 25 Mar 2007
- views: 1802
- author: TheFallibleFiend