with HEAT warhead of the German Army.]] Anti-tank warfare was created by the need to seek technology and tactics to destroy tanks and their supporting infantry during the First World War. Because tanks represent an enemy's greatest force projection, anti-tank warfare has been incorporated into the doctrine of every combat arm and service.
The predominant anti-tank weapons at the start of the Second World War were the tank-mounted gun, limbered (towed) anti-tank guns and anti-tank grenades used by the infantry. Anti-tank warfare developed rapidly, particularly on the Eastern Front, to include infantry and infantry support weapons, anti-tank combat engineering, towed anti-tank artillery, tank mounted guns, ground-attack aircraft and self-propelled tank destroyers. Both the Red Army and the Wehrmacht developed complex combined-arms methods of combating tank-led offensives, including deployment of static anti-tank weapons in in-depth defensive positions, protected by anti-tank obstacles and minefields, and supported by mobile anti-tank reserves and ground attack aircraft.
From the Korean War to the Cold War, Europe and other countries faced the possibility that a nuclear weapon could be detonated over an area of tank concentration in one strike. While technology was developed to protect crews of armoured vehicles from the effects of collateral radiation, the same could not be done for all their supporting arms and services on which tanks depend. In the NATO countries little if any development took place on defining a doctrine of how to use armed forces without the use of tactical nuclear weapons. In the Soviet sphere of influence the legacy doctrine of operational manoeuver was being theoretically examined to understand how the tank-led force could be used even with the threat of limited use of nuclear weapons on the European battlefield. The solution they arrived at was maneuver warfare while massively increasing the number of anti-tank weapons. To achieve this, Soviet military theorists (such as Vasily Sokolovsky) realised that anti-tank weapons had to assume an offensive role (rather than the traditionally defensive role of the Great Patriotic War) by becoming more mobile. This led to the development of guided anti-tank missiles, though similar design work was being performed in Western Europe and the United States.
The French SS.10 missile was the first successfully used in anti-tank combat—by the Israel Defense Forces during the Suez Crisis of 1956, but the impact of Soviet anti-tank missile tactics was not evident until 1973, when Russian 9K11 Malyutka (Sagger) missiles were used by the Egyptian and Syrian armies during the Yom Kippur War against Israel. The outcome suggested that although the French missiles were a threat, they could be countered. The explosive power delivered by the missiles convinced NATO tank designers to continue their emphasis on increased armour, while Soviet designers retained their emphasis on mobility of tank-led forces. The utility of the light anti-tank weapon was also recognised by both sides of the Cold War and led to further development of both shoulder-launched and man-portable weapons used by the infantry squad, while heavier missiles were mounted on dedicated missile tank-destroyers, including dedicated anti-tank helicopters, and even heavier guided anti-tank missiles launched from aircraft. Also being developed were new varieties of artillery munitions in the form of top-attack shells, and shells that were used to saturate areas with anti-armour bomblets. Helicopters could be used as well to rapidly deliver scattered anti-tank mines.
Since the end of the Cold War in 1993, the only major new threat to tanks and other vehicles, has been the Improvised explosive devices used by insurgents following the Global War on Terror. However, while the tank remains an important part of the army, anti-tank weapons and tactics continue to develop, as was shown by the 2006 operation in Lebanon. Some anti-tank weapons from the Second World War are now used as infantryman's "artillery" to defeat snipers or gain entry to structures. Even the anti-tank rifle has returned in its new guise of the anti-materiel rifle. As long as there are tanks there will be specific anti-tank weapons.
The use of the tank was primarily based on the assumption that once they were able to eliminate the German trench lines with their machine gun and Infantry support gun positions, the Allied infantry would follow and secure the breach, and the cavalry would exploit the breach in the trench lines by attacking into the depth of German-held territory, eventually capturing the field artillery positions and interdicting logistics and reserves being brought up from the rear areas. Naval crews initially used to operate the installed naval guns and machine guns were replaced with Army personnel who were more aware of the infantry tactics with which the tanks were intended to cooperate. However, there was no way to communicate between the tank's crew and the accompanying infantry, or between the tanks participating in combat. Radios were not yet made portable or robust enough to be mounted in a tank, although Morse Code transmitters were installed in some Mark IVs at Cambrai as messaging vehicles,. Attaching a field telephone to the rear would became a practice only during the next war. With greater use of tanks by both sides it was realised that the accompanying infantry could be forced to ground by ambush fire, thus separating them from the tanks, which would continue to advance, eventually finding themselves exposed to close-assaults by German infantry and sappers.
The early tanks were mechanically rudimentary. The armour generally prevented penetration by small arms fire and shell fragments. However, even a near miss from a field artillery or an impact from a mortar HE round easily disabled the tank, or destroyed it if the fuel tank was ruptured, incinerating the tank's crew. The need for a 'male' variant was recognised as a tactical necessity to defeat any infantry field pieces found in the trench lines which could easily disable tank track with the HE ammunition. This was achieved by mounting a QF 6 pounder Hotchkiss light 57 mm naval gun mounted in the hull barbettes. Hull and track engineering was largely dictated by the terrain—the need to cross wide trenches—although the relationship between ground pressure and soil-vehicle mechanics would not be resolved until the Second World War. Turrets were later introduced on medium and light tanks to react to ambushes during the advance.
The Interwar period was dominated by the strategic thinking with fortified borders at its core. These would include obstacles consisted of natural features such as ditches, streams and urban areas, or constructed obstacles such as anti-tank ditches, minefields, dragon's teeth, or log barriers. The pinnacle of this strategic thinking was considered to be the Maginot Line which replaced infantry-filled trenches with artillery-filled bunkers, including casemates housing 37 or 47 mm anti-tank guns, and steel turrets armed with a pair of machine guns and a 25 mm anti-tank gun, although Germany was forbidden to produce tanks. The construction was partially based on the Allied experience with the Hindenburg Line which was breached with tank support during the battles of Cambrai and St. Quentin Canal, although German Command was more impressed by the surprise achieved by the Canadian troops at the Battle of the Canal du Nord. This would come to influence their planning in 1940.
Improved artillery was seen as the quickest solution to anti-tank defense, and one of the earliest post-war anti-tank gun designs was the 25 mm Hotchkiss model from France. It was intended to replace an Atelier de Puteaux 37 mm weapon designed in 1916 to destroy machine gun positions. Rheinmetall commenced design of a 37 mm anti-tank gun in 1924 and the first guns were produced in 1928 as 3.7 cm Pak L/45, later adopted in Wehrmacht service as 3.7 cm Pak 36. It made an appearance during the Spanish Civil War, as did the Bofors 37 mm developed in Sweden, and used by many early Second World War combatants. The British Army accepted for service the (40 mm) Ordnance QF 2 pounder which was developed as a tank gun. The Soviet Red Army after the Russian Civil War also begun a search for an anti-tank gun with a French Hotchkiss 37 mm L.33 tank gun, but soon upgraded this to a higher velocity L.45 Model 1935 while also making a copy of the German 3.7 cm PaK 35. However, the Red Army was almost immediately taught a lesson about anti-tank warfare when a tank battalion sent to aid the Spanish Communists in the Spanish Civil War was almost entirely destroyed in an engagement.
At this time the predominant ammunition used against tanks was the armour piercing kinetic energy shell that defeated armour by direct pressure, spiking or punching through it. During the late 1930s shaped charge ammunition was experimented with that used chemical energy for armour penetration. More difficult to manufacture, its advantage was in that on impact it would create a high-velocity jet of molten metal which created tremendously high pressures, hydrodynamically deforming the armour. The depth of the penetration, though proportional to the length of the jet and the square root of its density, is also dependent on the strength of the armour. With the development of this new ammunition begun more advanced research into steel manufacturing, and development of spaced armour that would cause "jet waver" by detonating prematurely or at the wrong angle to the surface of the main armour.
The only significant attempt to experiment in the use of tanks in the late 1920s was that of the British Army's Experimental Mechanized Force that would influence future development of tanks, armoured troops and entire armies of both its future enemies and allies in the next war.
In Spain the anti-tank defense of the Nationalists was organised by the Wehrmacht officers, and the anti-tank guns were incorporated into a system of obstacles that were constructed with the intent to stop an attack by tanks by slowing it down, separating them from supporting infantry (advancing on foot) with machine-gun and mortar fire, and forcing tanks to conduct deliberate head-on assaults with engineer support, or seek a less-defended area to attack. Minefields laid with purpose-designed mines were used for the first time, destroying tank tracks, and forcing combat engineers to clear them on foot. Delay meant that Nationalist field artillery could engage the lightly armoured Soviet tanks. This meant a change in Republican operational and eventually strategic planning, and a more protracted combat operations, with more casualties at a greater cost.
The only change to the German anti-tank tactics of the First World War was that now an effective anti-tank weapon was available to support the defending infantry. However, the Soviet tanks armed with 45 mm guns easily destroyed the German light tanks.
Ironically, in the early 1930s until the Spanish War, German officers were conducting secret testing of a new way of employing tanks, infantry and artillery offensively in the Soviet Union with the cooperation of the Red Army. In Germany these developments would eventually culminate in tactics that would later come to be known as Blitzkrieg, while in the Soviet Union they would form the core of the deep battle operational doctrine. The successful test of the later would be during the Battles of Khalkhin Gol although the Red Army would founder on the Mannerheim Line in 1940, largely due to the purge in the Officer Corps, claiming many of the senior proponents of the new doctrine. Anti-tank artillery would be included in mobile tank-led Wehrmacht and Red Army units due to the possibility of encountering enemy tanks in a meeting engagement.
The new doctrines of using the tank, were divided into infantry and cavalry schools of thought. The former regarded the tank as a mobile artillery system to be used for infantry support. This suggested that the infantry needed to be armed with integral anti-tank weapons. The later advocated use of tanks in the traditional cavalry way of high tempo attacks intended to outflank the enemy infantry and sever its communication lines. This approach suggested that the tank would be the best anti-tank system, and only limited anti-tank troops were required to accompany them. For this reason the late 30s tank configurations came in a great diversity, ranging from light tankettes and cavalry tanks to multi-turreted heavy tanks resembling bunkers, all of which had to be considered in training by the anti-tank artillery troops. The development of these doctrines was the most significant influence on the rapid development in anti-tank technology and tactics in the Second World War.
===Anti-tank guns===
Anti-tank guns are guns designed to destroy armored vehicles from defensive positions. In order to penetrate vehicle armor they fire smaller calibre shells from longer-barreled guns to achieve higher muzzle velocity than field artillery weapons, many of which are howitzers. The higher velocity, flatter trajectory ballistics provide terminal kinetic energy to penetrate the armour at a given range. Any field artillery cannon with barrel length 15 to 25 times longer than its caliber was able also to fire anti-tank ammunition, such as the Soviet A-19.
Prior to World War II few anti-tank guns had (or needed) calibers larger than 50 mm. Examples of guns in this class include the German 37 mm, US 37 mm (the largest gun able to be towed by the jeep), French 25 mm and 47 mm guns, British QF 2-pounder (40 mm), Italian 47 mm and Soviet 45 mm. All of these light weapons could penetrate the thin armour found on most pre-war and early war tanks.
50-mm anti-tank gun]] At the start of World War II many of these weapons were still being used operationally, along with a newer generation of light guns that closely resembled their WWI counterparts. After Soviet T-34 and KV tanks were encountered these guns were recognised as ineffective against sloped armour, with the German lightweight 37 mm gun quickly nicknamed the "tank door knocker" (), for revealing its presence without penetrating the armour.
Germany quickly introduced more powerful anti-tank guns, some which had been in the early stages of development prior to the war. By late 1942 the Germans had an excellent 50-mm high-velocity design, while they faced the QF 6-pounder introduced in the North African Campaign by the British Army, and later adopted by the US Army. By 1943 Wehrmacht was forced to adopt still larger caliber on the Eastern Front, the 75 mm and the famous 88 mm guns. The Red Army used a variety of 45 mm, 57 mm, and 100 mm guns, as well as deploying general-purpose 76.2 mm and 122-mm guns in the anti-tank role. For the Invasion of Normandy the British QF 17 pounder, whose design had begun before the 6 pounder entered service, was produced that proved to be a highly effective anti-tank gun also used as a tank and tank destroyer gun.
;Self-propelled anti-tank guns
As towed anti-tank cannon guns grew in size and weight, they became less mobile and more cumbersome to maneuver, and required ever larger gun crews, who often had to wrestle the gun into position while under heavy artillery and/or tank fire. As the war progressed, this disadvantage not infrequently resulted in the loss or destruction of both the antitank gun and its trained crew. This gave impetus to the development of the self-propelled, lightly armored tank destroyer (TD). The tank destroyer was usually based on the hull of existing tank designs, using either a gun integrated into the hull or a fully rotating turret much like that of a conventional tank. These self-propelled (SP) AT guns were first employed as infantry support weapons in place of towed antitank guns. Later, due to a shortage of tanks, TDs sometimes replaced the former in offensive armored operations.
75 mm anti-tank gun]] Early German-designed tank destroyers employed existing light French or Czech design tank chassis, installing an AT gun as part of an armored, turret-less superstructure. This method to reduced both weight and conversion costs. The Soviet Union later adopted this style of self-propelled anti-tank gun or tank destroyer. This type of tank destroyer had the advantage of a reduced silhouette, allowing the crew to more frequently fire from defilade ambush positions. Such designs were easier and faster to manufacture and offered good crew protection, though the lack of a turret limited the gun's traverse to a few degrees. This meant that if the TD became immobilized due to engine failure or track damage, it could not rotate its gun to counter opposing tanks, making it an easy target. This vulnerability was later exploited by opposing tank forces. Late in the war, it was not unusual to find even the largest and most powerful tank destroyer abandoned on the field after a battle, having been immobilized by a single high explosive shell to the track or front drive sprocket.
US Army pre-war infantry support doctrines emphasized the use of tank destroyers with open-top fully rotating turrets, featuring less armor the standard M4 Sherman tanks, but with more powerful cannon. A 76 mm long-barrel tank cannon was fitted to the M10 and M18 designs. Late in 1944, the M36 appeared, equipped with a 90 mm cannon. With rotating turrets and good combat maneuverability, American TD designs generally worked well, although their light armor was no match for enemy tank cannon fire during one on one confrontations. Another disadvantage proved to be the open, unprotected turret, and casualties from artillery fire soon led to the introduction of folding armor turret covers. Near the war's end, a change in official doctrine caused both the self-propelled tank destroyer and the towed antitank gun to fall from favor in U.S. service, increasingly replaced by conventional tanks or infantry level antitank weapons. Despite this change, the M36 tank destroyer continued in service, and was used in combat as late as the Korean War.
Anti-tank rifles were introduced in some armies before the Second World War to provide infantry with a stand-off weapon when confronted with a tank assault. The intention was to preserve good morale of the infantry by using a weapon that could actually defeat a tank.
Anti-tank rifles were developed in several countries during the 1930s. By the beginning of WW2, anti-tank rifle teams could knock out most tanks from a distance of about 500 m, and do so with a weapon that was man-portable and easily concealed. Although the AT rifle performance was negated by the increased armour of medium and heavy tanks by 1942, they remained viable against lighter-armoured and unarmoured vehicles, and against field fortification embrasures.
Notable examples include the Finnish Lahti L-39 (which was also used as a sniper rifle during the Winter War), the automatic Japanese Type 97 20 mm anti-tank rifle, the German Panzerbüchse 38, Panzerbüchse 39, the Polish wz.35 and the Soviet 14.5 mm PTRD and PTRS-41.
Although by 1943 other armies judged the anti-tank rifle to lack combat effectiveness due to their diminished ability to penetrate the thicker armour of new tanks, the anti-tank rifle remained in Soviet use during the conflict for its place in the system of anti-tank defensive tactics.
After the war, research on infantry anti-tank weapons continued, with most designers focused on two primary goals; first, an anti-tank weapon that could defeat more heavily-armored postwar tanks and fighting vehicles, and second, a weapon lightweight and portable enough for infantry use.
There was also a special type of grenade called the Nebelhandgranaten or Blendkörper ("smoke hand grenades"), which was supposed to be smashed over an air vent and fill the tank with smoke, widely used by both sides in World War II. Molotov cocktails also saw much use, especially in the Winter War, early tanks (such as the T-26) being very vulnerable to them, but later tanks required a well-thrown bottle directly over the engine compartment to have any effect at all.
On the whole, thrown anti-tank weapons suffered from a variety of drawbacks. In addition to the inherently short range, they required careful aim to be effective, and those that relied on explosive force were often so powerful that the user had to take cover immediately.
Anti-tank tactics during the war were largely integrated with the offensive or defensive posture of the troops being supported, usually infantry. Much of anti-tank tactics depend on the range effectiveness of various weapons and weapon systems available. These are divided as follows: :Operational range over the horizon (20–40 km range) – bomber aircraft and long range artillery :Tactical staging areas (7–20 km range) – ground attack aircraft and field artillery including MRLs :Tactical zone forming-up area and rear combat zone (2–7 km range) – heavy anti-tank guns and mortars :Tactical forward combat zone (1–2 km range) – anti-tank guns and tanks deployed in defense :Engagement distance (200–1000 m range) – mines and anti-tank rifles :Close combat distance (25–200 m range) – infantry anti-tank weapons
Although ground-to-air cooperation was not yet systematic in any army of the period, but given sufficient warning, ground attack aircraft could support ground troops even during an enemy attack in an attempt to interdict the enemy units before they come into tactical combat zone. Various bomb loads can be used depending on what type of tank unit is engaged in at the time, or who its accompanying troops are. This is an indirect form of anti-tank warfare where the tanks are denied the opportunity to even reach combat.
Field artillery was particularly effective in firing against tank formations because although they were rarely able to destroy a tank by direct penetration, they would severely crater the area preventing the tanks from moving, and therefore causing them to become nearly stationary targets for the ground attack aircraft, or disrupting the enemy schedule and allowing own troops more time to prepare their defense.
Anti-tank defense proper was, by 1942, designed in First World War fashion with several prepared trench lines incorporating anti-tank weapons of different capabilities. Depending on terrain and available line-of-sight, the longer-ranged guns could begin to fire on approaching tanks from as far as 2 kilometers, which was also the range at which German Panther and Tiger tank gunners were trained to fire. Anti-tank guns were usually deployed to cover terrain more suitable for tanks, and were protected by minefields laid at about 500 meters to 1 kilometer from their positions by combat engineers. In the Red Army the anti-tank rifle units would be positioned throughout the forward trench line, and would engage the lighter tanks and any other vehicles, such as infantry half-tracks, in an attempt to separate them from the tanks. The anti-tank guns deployed further back would often hold their fire until enemy tanks were within the most effective range for their ammunition. Where there were insufficient anti-tank weapons, engineers would construct anti-tank obstacles such as "dragon's teeth".
Towed anti-tank guns were thought to be the primary means of defeating tanks. At battle of Kursk, for example, the Red Army deployed more artillery regiments than infantry regiments, and towed gun densities reached over 20 guns per kilometer of defended tactical zone. A towed gun was much cheaper than a tank, and could be concealed in a shallow position. When time allowed, dugouts with strong overhead cover could be constructed. Guns deployed on reverse slopes and in flanking positions could take a toll of attacking tanks. However, gun crews were vulnerable to artillery and mortar HE fire and enemy infantry. Their positions had to be carefully selected and, once engaged, they generally could not redeploy. Experience strongly suggested that towed AT guns were less effective than self-propelled AT weapons and took heavier casualties.
Self-propelled anti-tank guns were rare at the beginning of WW2, although the Belgian Army deployed a few T.15 tank destroyers and the French army was developing several wheeled and tracked designs. The advantages of mobility and even thin armour protection were so compelling, however, that most armies were using self-propelled AT guns by mid-war. Examples of these weapons included the US M10, German Marder II, and Soviet SU-85.
The British Army had abandoned the anti-tank rifle by 1942, and the Wehrmacht by 1943, while the US Army never adopted the weapon, though the USMC used Boys anti-tank rifles in the Pacific Theatre. The Red Army did not abandon the anti-tank rifle due to the importance it occupied in its doctrine of anti-tank in-depth defense, first demonstrated during the defense of Moscow, and again during the Kursk battles. This became particularly true later in the war when the Red Army assumed an almost constant offensive, and anti-tank in-depth defensive deployments were used for protecting flanks of the operational breakthroughs against German tactical counterattacks. By firing on the lighter armoured infantry and support vehicles (e.g. artillery tractors) the anti-tank rifle units helped to separate the supporting infantry (panzergrenadiers) and artillery of the German tanks and so forcing the tanks to halt at short distances from the concealed anti-tank guns and leaving them exposed to fire from larger, londer ranged anti-tank guns. PTRS-41 semi-automatic anti-tank rifles were also used for sniping since an additional tracer round enabled rapid fire adjustment by the gunner. Although optical sniper scopes were tried with the PTRS-41, the weapons proved too inaccurate at sniping distances (800 m or more), and the recoil to much for effective use of the scopes.
Because tank crews have limited visibility from inside the tank, infantry can get close to a tank given enough concealment and if the hatches are closed. If tank crewmen unbutton for better visibility they become vulnerable to small arms fire. An infantryman cannot be targeted by a tank's main gun when close as it cannot depress sufficiently. Close defense weapons such as pistol ports, hull-, coaxial- and pintle-mounted machine guns gave them some protection however.
Whilst many hand-held infantry anti-tank weapons will not penetrate the front armour of a tank, they may penetrate the less heavily armoured top, rear, and sides. Damage to the tracks or running gear can inflict a mobility kill. Early WWII tanks had open vision slits which could be fired through to kill the crew. Later tanks' slits had thick glass, as well as sights and periscopes which could still be damaged with powerful small arms such as anti-tank rifles and heavy machine guns, hampering the crew. If all else fails, the hatch could also be forced open and grenades thrown inside, although later tank designs often have hatches designed to be difficult to open from the outside.
Tanks were also vulnerable to hand-placed anti-tank mines. Infantry have even immobilised tanks using a set of plates covered with leaves and dirt as dummy mines (the ruse being augmented by the crew's obscured vision). Infantry can then attack the stopped tank. This tactic was taught to the British Home Guard during World War II since they were not often provided with long-range anti-tank weapons.
In some cases in World War II, a tactic of the some infantry was to run directly up to a tank, avoiding their main and machine guns, and pour petroleum over and into the tank and light it, sometimes blocking the exit, burning the crew alive. Used by Soviet and German infantry respectively.
In the Japanese army, the use of satchel charges and pole charges was widespread. Although the charges could knock out any allied tank, the tactic was extremely close-range, and the sappers were vulnerable to all allied weapons.
In the U.S., the M9A1 bazooka rocket launcher evolved into the more powerful M20 "Super Bazooka", which was used to good effect against North Korean armored spearheads during the Korean War. However, the M20 proved difficult and cumbersome to portage on foot over long distances. The Anti-Tank Aircraft Rocket, developed by the navy, also proved effective against North Korean tanks.
The anti-tank helicopter armed with ATGWs (Anti-Tank Guided Weapons) or anti-tank cannons is one of the biggest threats to a modern tank. The helicopter can position itself where it is not easily seen from a tank and then attack from any quarter, exposing the weaker parts of the tank's armour. The limited visibility from a closed-down tank also makes sighting a helicopter harder.
Most helicopter-launched ATGWs have sufficient range that they can under the right conditions be fired at a range too long for the tank to retaliate with its own weapons. This may change with the Israelis fielding the Lahat missile that can be fired from the main gun of the Merkava MBT. With both anti-tank and anti-helicopter role, it does level the playing field somewhat. The Indian Arjun tank has also been modified to fire this missile. The People's Republic of China has developed 100 mm gun-launched missiles based on Russian designs such as the GP2 (based on the Russian Bastion). It has been reported to have successfully engaged aerial targets, as well as being an anti-tank missile. Similar missiles are available for Chinese tanks equipped with the 105 mm gun. The Russians have also displayed a similar if more advanced system in the Reflex. The system involves an automatic targeting of an aerial/land target instigated by a laser warning system.
Although putting weapons on helicopters (probably) dates back to the 1955 with the Bell 47, the first specific attack helicopter that went into mass production was the Bell AH-1 Cobra in 1966. The AH-1 was equipped with TOW missiles in 1973 for anti-tank capability.
Guided and unguided scatter munitions and submunitions have also been developed: a single artillery shell containing a number of smaller munitions designed to attack a tank. A six-gun battery might be able to fire several hundred submunitions in a minute or two.
In one form, the shell bursts in the air above the tank and a number of shaped charge (HEAT) or HEDP (High Explosive Dual Purpose) bomblets or grenades rain down. Any that hit the tank have a good chance of causing damage, since they are attacking the thin top armour.
Another form scatters a number of small anti-tank mines in the tank's path, which probably will not penetrate the armour but can damage a track, leaving the tank immobile and vulnerable.
More sophisticated are submunitions with a homing capability. Once again the shell explodes above the tank position and dispenses a number of submunitions. The munitions contain some circuitry to identify tanks, such as IR or millimetre radar; when a tank is identified, a rocket propellant is fired to shoot the projectile at the tank. These munitions will often descend by parachute, to allow time for target acquisition and attack.
All of the above but the CLGP can be fired from medium (122/152/155-mm) artillery, both tube and rocket. There has also been development of large calibre (81 mm and larger) guided mortar munitions with both internal (e.g., IR or radar) or external (i.e., laser designator) guidance.
Active protection systems such as the Russian Arena active protection system are starting to be more common, with similar systems such as the Israeli Iron Fist active protection system. The tank may be on a comeback because of active defense systems, which attack missiles in mid-air. This may allow the tank to be competitive on the battlefield once again.
The Soviets developed the RPG-2 from the German Panzerfaust 150. Further development led to the ubiquitous RPG-7. The RPG-7 is one of the most widely used Anti-tank weapon, favored most by soldiers of Irregular Militaries. The RPG-7 could fire a range of different warheads, from Thermobaric warheads to a single HEAT or Tandem-charge HEAT warheads against Explosive reactive armour equipped tanks. The RPG-7 has a long combat history, and has been used in most wars from the Vietnam war all the way to present day wars. In modern times, the RPG-7 is generally used in an Urban environment, which would enhance their effectiveness due to the close ranges involved. However, the aging RPG-7 has evolved to the even more potent RPG-29 which has proven its worth in conflicts in the Middle East, disabling or destroying Merkava IV, Challenger 2 and M1 Abrams Main battle tanks.
In the 1960s, the U.S. Army adopted the M72 LAW rocket, a lightweight, collapsible rocket launcher with the ability to penetrate moderate thicknesses of enemy armor. During Vietnam War, the weapon was used primarily against NVA and Viet Cong defensive works and emplacements, as there were few encounters against enemy armor. Overall, the LAW was regarded as a success, though its ignition system frequently suffered from misfires in the heat and humidity of Vietnamese jungles. The LAW has since been replaced by the AT4 (M136).
Weapon systems like the RPG-29 and FGM-148 Javelin use a Tandem warhead where the first warhead disables reactive armor, while the second warhead defeats the shell armour by means of a HEAT or a shaped charge.
Today the anti-tank role is filled with a variety of weapons, such as portable "top attack" artillery ammunition and missiles, larger HEAT missiles fired from ground vehicles and helicopters, a variety of high velocity autocannon, and ever-larger heavy tank guns.
One of the first lessons of the 2006 Israel-Lebanon conflict is the effectiveness of portable rocket propelled grenades, in particular, Russian-made RPG-29, and Metis-M, Kornet and European MILAN anti-tank missiles.
Category:Anti-tank guns Category:Anti-tank weapons Category:Armoured warfare
ar:حرب مضادة للدروع bg:Противотанково оръдие cs:Protitankové zbraně da:Panserværnsvåben de:Panzerabwehr et:Tankitõrje es:Armamento antitanque fr:Lutte antichar it:Artiglieria controcarri he:אמצעי לחימה נגד טנקים lt:Prieštankinis ginklas ms:Pertempuran anti-kereta kebal nl:Antitankgeschut ja:対戦車兵器 no:Panservern pl:Armata przeciwpancerna pt:Armas anticarro ru:Противотанковое оружие sk:Protitankové zbrane sl:Protioklepno orožje fi:Panssarintorjunta sv:Pansarvärn th:ปืนต่อสู้รถถัง tr:Tanksavar uk:Протитанкова зброя zh:反坦克戰This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.