The names and definitions of the various cycle facility types vary from country to country, but besides local naming conventions, one of the main subdivisions is whether the facility is physically separated by barriers, parking or bollards from other (especially motor vehicle) traffic, or whether the segregation is due to painted markings. The facilities have been modified over time and increased in variety as usage changes, and as cities receive feedback and experiment with improvements.
Bike lanes and road shoulders demarcated by a painted marking are quite common both in many European and American cities. Segregated cycle facilities demarcated by barriers, bollards or boulevards are quite common in some European countries such as the Netherlands, Denmark and Germany. They are also increasingly being installed in other major cities such as New York City, Bogotá, Melbourne, Vancouver, Ottawa and San Francisco. Montreal and Davis, California are among the North American cities that have had segregated cycle facilities with barriers for several decades.
. Bicycles in the green-painted lane have right of way. Other road traffic must give way before crossing into the left turning lane at the lights.]]
Cycle tracks may be one-way or two-way, and may be at road level, at sidewalk level, or at an intermediate level. They all share in common some separation from motor traffic with bollards, car parking, barriers or boulevards.
In the UK, cycle track is a roadway constructed specifically for use by cyclists, but not by any other vehicles. In Ireland cycle track also covers cycle lanes marked on the carriageway but only if accompanied by a specific sign. In the UK, a cycle track may be alongside a roadway (or carriageway) for all vehicles or it may be on its own alignment. The term does not include cycle lanes or other facilities within an all-vehicle carriageway.
A shared-use footway is for use by both cyclists and pedestrians in the UK and will usually be to a lower standard than a cycle track. While cyclists may be required to yield right of way to foot traffic on a shared use footway which is unsegregated (i.e., where both types mix freely), cyclists are usually considered to be the primary users on cycle tracks. Note that the design standards and recommendations for shared use footways and cycle tracks in the UK are different from those for shared use paths in the U.S.
An early example of an American segregated cycle facility was the nine-mile dedicated Cycle-Way built in 1897 to connect Pasadena, California to Los Angeles. Its right of way followed the stream bed of the Arroyo Seco and required 1,250,000 board feet (2,950 m3) of pine to construct. The roundtrip toll was 15¢ US and it was lit with electric lights along its entire length. The route did not succeed, and the right of way later became the route for the Arroyo Seco Parkway, an automobile freeway opened in 1940.
The first (and one of the very few) dedicated roadside optional cycle tracks was built, as an experiment for the Ministry of Transport, beside Western Avenue between Hanger Lane and Greenford Road in 1934. It was thought that "the prospect of cycling in comfort as well as safety would be appreciated by most cyclists themselves". However, the idea ran into trenchant opposition from cycling groups, with the CTC distributing pamphlets warning against the threat of cycle paths.
Local CTC branches organised mass meetings to reject the use of cycle tracks and any suggestion that cyclists should be forced to use such devices. In 1935, a packed general meeting of the CTC adopted a motion rejecting ministerial plans for cycle path construction. The CTC were listened to, and the use of cycle tracks largely fell out of favour in the UK.
The guidelines strongly influenced cities such as Helsinki and Västerås to build large cycle path networks. By the late 1960s and 1970s, with the cyclists mainly gone, many German towns began removing cycle tracks so as to accommodate more car parking. Increasing traffic congestion and the 1970s oil shocks contributed to a resurgence in cycling in some countries. Outside of SCAFT-inspired developments in Nordic countries, the use of segregated cycle facilities was mainly confined to university towns with established populations of bicycle users.
More recent statistical data shows that the accident rate for pedestrians in Milton Keynes is just 46% of the average for England and the rate for cyclists is 87%. However, the secluded semi-rural nature of many redways that make them pleasant by day can make some people feel unsafe to use them after dark.
In the Netherlands bicycle use declined from the post-war period up to about 1975 as automobile use increased and commuting distances increased. Bicycle traffic policy was almost completely excluded from the national government vision. Things began to turn around in about 1972 with the oil crisis. Local and national policy began to pay more attention to cycling. Bicycle use increased dramatically. Amsterdam's traffic circulation plan of 1978 gave priority to bicycle facilities, in particular separated cycle tracks, which also meant taking some road space away from motor vehicles. The national government soon followed with subsidies for constructing bike paths alongside secondary and minor roads so that "lost ground could be made up". UCLA largely copied Dutch bicycle facilities practice (primarily sidepaths) to create their bikeway designs, but the derived designs were not made public. The California Statewide Bicycle Committee (CSBC) was created in 1975, initially composed of representatives of governmental and motoring organisations. When John Forester, a cyclist representative, became a member he concluded that the real motivation for moving cyclists aside was the convenience of motorists, although the stated reason was the safety of cyclists.
When serious safety issues were identified with the proposed designs, the resulting cyclist opposition discredited the designs and prevented enactment of a mandatory side-path law. This forced the state to start over with new bikeway design standards in 1976. Those designs were subsequently adapted by the Association of American State Highway and Transportation Officials (AASHTO) to form the first edition of the AASHTO Guide for Bicycle Facilities, which is widely followed in the USA.
The use of segregated cycle facilities is promoted by a large segment of the cycling community, for example lane and path cyclists, and also by many organisations associated with the environmental movement. The rise of the "Green" movement in the 1990s has been accompanied by requests for the construction of cycle networks in many countries. This has led to various high-profile cycle network projects, in Bogotá, Montreal, Dublin, Portland, New York, Boston, and many other cities.
Safety data on segregated cycling facility is still incomplete and difficult to draw definite conclusions, though some evidence is pointing towards the lower risk of cycling-specific infrastructure. A 2006 report by the National Cooperative Highway Research Program in the UK concludes that "bicycle safety data are difficult to analyse, mostly because bicycle trip data (and thus accident probability per trip) are hard to uncover" (see NCHRP Report 552, 2006, "Guidelines for Analysis of Investment in Bicycle Facilities", National Cooperative Highway Research Program, Transportation research Board of the National Academies, page F-1). One major reason for the inability to draw definite conclusion may be that facilities with different risks are often categorized together so that off-road paths - paved or unpaved, bicycle-only or multi-use - were lumped together, as found by research at the Cycling in Cities program at the University of British Columbia.
The Netherlands and Denmark, which have the highest rates of cycle usage combined with the best records for safety, place importance on their segregated cycle track networks in achieving these goals. A large study undertaken into the safety of Copenhagen cycle tracks concludes that their construction resulted in an increase in cycle traffic of 18-20% and a decline in car traffic of 9-10%, contributing to an increase in cycle usage along those routes. On those same reconstructed routes accidents and injuries increased by 9-10% (the increase of accidents and injuries increased at intersections while decreased mid-block). On the surface it appears as if overall the cycle tracks actually *decrease* safety, but from the perspective of an individual cyclist, claims Dr. Lon D. Roberts, the Copenhagen shows that the "likelihood an individual bicyclist will experience an accident goes down as the number of bicycle riders go up".
The Copenhagen study also found accident and injury rates were related to the amount of car parking, turn lanes, blue cycle crossing markings, and raised exits at non-signalised intersections, suggesting that risk is dependent on making various improvements to the cycle tracks. For instance, recent planning guidelines in the US advise that cycle tracks drop to a bike lane before arriving at an intersection to increase the visibility of cyclists.
A 2010 study in Montreal, Canada, compared the motor vehicle/bicycle crashes and injuries on six Montreal cycle tracks (physically separated bicycle-exclusive paths along roads) with comparable reference roads (a parallel road with approximately the same intersection frequency and cross traffic). The authors found 2.5 times as many cyclists rode on the cycle tracks compared to the reference roads. They also found that the relative risk of injury was lower on a cycle track than on the comparable reference road (the average being 0.72 the relative risk). They concluded that "[c]ycle tracks lessen, or at least do not increase, crash and injury rates compared to bicycling in the street"
The New York City Department of Transportation implemented a bicycle path and traffic calming pilot project for Prospect Park West in Brooklyn in 2010 and published their results in early 2011. It created a 2-way bicycle path with a three foot parking lane buffer and the removal of one lane from motor vehicles. They found that weekday cycling traffic tripled after the implementation; cyclists riding on the sidewalk fell to 3% from 46% (the count included children who are legally allowed to ride on the sidewalk); speeding dropped from 74% to 20% of all vehicles; crashes for all road users were down 16% and injuries to all road users were down 21%.
The UK Cycle Campaign Network made a 2007 statement that they know "of no evidence that cycle facilities and in particular cycle lanes, generally lead to safer conditions for cycling".
A 1994 study in Palo Alto, California found that cyclists on a sidewalk or bike path incur a greater risk of collision with a motor vehicle than on the roadway (including bike lanes on the roadway) The study, however, combined the results from sidewalks and bike paths, making it unclear what are the relative risks in the two different types of infrastructure. It's unclear from the study, as well, how Palo Alto bike paths compare to the bike paths or cycle tracks of other cities.
Other countries have had negative results from cycle tracks: In Germany, Sweden, Denmarkand Finland, it has been found that cycling on roadside urban cycle tracks/sidepaths results in increases in the rate of car/bicycle collisions of between 1.1 and 12-fold, depending on the form of the bike lane. At a 1990 European conference on cycling, the term Russian roulette was used to describe the use of roadside cycle paths.
In Helsinki, research has shown that cyclists are safer cycling on roads with traffic than when using the city's of cycle paths. The Berlin police and Senate conducted studies which led to a similar conclusion in the 1980s.
In the UK, cycling collision data recorded by police indicates that at non-junction locations, where a cyclist was struck directly from behind there was an overall fatality rate of 17%. The rate of fatality increases with speed limit of the road: 5% on , 13% on , 21% on and 31% on roads.
The use of appropriately designed segregated space on arterial or interurban routes appears to be associated with reductions in overall risk. In Ireland, the provision of hard shoulders on interurban routes in the 1970s reportedly resulted in a 50% decrease in accidents. It is reported that the Danes have also found that separate cycle tracks lead to a reduction in rural collisions.
A wide ranging study by P L Jacobsen found that as cycling and walking increase, the chance that a given cyclist will be struck by a motor vehicle actually decreases. This pattern is consistent across communities of varying size, from specific intersections to cities and countries, and across time periods. Jacobsen found that doubling the number of cyclists on the road tends to bring about a 1/3 drop in the per-cyclist frequency of a crash with a motor vehicle. By the same token, tripling the rate of cycling cuts the crash rate in half. A study of the accident impacts of re-engineering bicycle crossings in the Swedish city of Gothenburg appears to corroborate those findings by attributing collision rate reductions in part to significant increases in cyclist volumes at the treated sites.
Detractors argue that the most prominent examples of "successful" cycle networks were implemented in towns that already had significant numbers of cyclists. In such cases it is speculated that a existing large cycling population might already exert a "safety in numbers" effect, and it is this, rather than their diversion onto off-road tracks, that accounts for the better safety record. More people might start cycling if the perceived safety of doing so improved sufficiently.
Dutch analysts have argued as a statistical exercise that given that three times as many cyclists as car occupants are injured in collisions, and that cars harm about three times the number of other road users that bicycles do, in situations where casualties due to car traffic predominate increasing the number of cycling journeys and reducing the number of car journeys will reduce the total number of casualties
Various remedial measures have been developed in an attempt to reduce the risk along segregated cycle facilities. In some environments these represent established engineering practice while in others they may have to be retroactively applied in response to complaints and safety concerns. Examples include the addition of a separate system of traffic signals for bicycle traffic; markings - either coloured or sharrows continued through the intersection; bike boxes with no right turn on red lights for motorists, raised intersections, and elimination of car parking or the barrier as the cycle track approaches the intersection.
Some treatments involve raising the cycle track onto a speed ramp type structure where it crosses side roads. In addition, various road markings have been developed in an attempt to remedy the issue of increased junction collisions. Examples of these include the use of special road markings, e.g. "sharks teeth" or "elephants footprints", and treatments using red, green or blue coloured tarmac. Other approaches include efforts to "traffic calm" the bicycle traffic by introducing tight curves or bends to slow the cyclists down as they near a junction. Alternatively, traffic engineers may remove priority from the cyclists and require them to yield to turning traffic at every side road. In 2002, engineers proposing a sidepath scheme in the Irish university city of Galway stated that cyclists would be required to dismount and "become pedestrians" at every junction on the finished route.
This variation also applies to the operation of traffic signals and cyclist-specific traffic lights. For instance, in Germany and elsewhere at junctions with segregated facilities all the traffic in a given direction (motorists, pedestrians and cyclists) may get a green signal at the same time. Turning motor traffic is obliged to wait for cyclists and pedestrians to clear the junction before proceeding. In this situation all the transport modes get equal green time. In contrast, UK and Irish practice restricts pedestrians to a dedicated signal phase, separate from and usually much shorter than the green phase for motorists (e.g. 6–12 seconds, vs. signal cycle times of up to 120 seconds). If cyclists were to be segregated and treated in a similar manner this would imply a significant reduction in green time for cycle traffic at every junction. In the English city of Cambridge the use of cyclist-specific traffic signals is reported to have resulted in increased delays for cyclists, leading some to ignore the cycle-facilities and stay on the road. A similar example occurred in a Parisian bikepath scheme in 1999. Cyclists faced twice the number of traffic signals as motorised traffic and were expected to wait over one minute to get seven seconds of green time. Conversely, in Copenhagen cyclist-specific traffic signals on a major arterial bike lane have been linked to provide "green waves" for rush hour cycle-traffic.
As more cycle tracks are built in North American cities, more research is being conducted on the uptake and safety of cycle tracks. North American cities that have recently installed cycle tracks have seen significant growth in cyclists using these roads. It is useful, therefore, to use North American examples of cycle tracks/side paths and compare them to similar roads used by cyclists. This will provide better data using cyclists on similar terrain and presumably similar bicycles and experience.
Some cycling activists have opposed cycle tracks and paths on the principle that they might be created with the "fast cyclist type" in mind. The UK’s Sustrans guidelines for the National Cycle Network are based on recreational use with a design user who is an unaccompanied twelve-year-old. The Dublin Transportation Office has advertised their cycle facilities as being based on an unaccompanied ten-year-old design user. This raises the issue of what happens if different cyclist types find themselves forced onto such devices either by legal coercion or as a result of motorist aggression. This issue is captured in a 1996 review of the Sustrans approach from the Proceedings of the Institution of Civil Engineers.
The fast cycle commuter must not be driven off the highway onto a route that is designed for a 12-year-old or a novice on a leisure trip, because if that happens, the whole attempt to enlarge the use of the bicycle will have failed
The cleaning and plowing of bike lanes and cycle tracks needs to be taken into consideration. They either need to be made wide enough for the street sweepers and snow plows typically used in a locale, or the locale will need to ensure that they are regularly swept or plowed by machines that will fit.
Some locales have issues with debris in the cycle paths, such as Milton Keynes, UK, finding that cycle path users are seven times more likely to get punctures than are road cyclists. In Ireland some cyclists have demanded simultaneous commitment to maintenance and sweeping as cycle paths are built.
In areas subject to high leaf-fall in autumn, or high snowfall in winter, any cycle facilities must be subject to regular clearing if they are to remain usable. Danish guidance specifies three different categories of cycle track. Category "A" tracks must be kept clear of snow 24 hours a day, category "B" tracks are swept or cleared daily, and category "C" receive less regular winter maintenance. In 2007 the city of Copenhagen spent DKK 9.9 million (US$1.72 million, €1.33 million) annually on maintaining its cycle track network. German federal law requires local authorities to declassify cycle tracks that do not conform to strict design and maintenance criteria. In the UK, facilities for non-motorized traffic are not normally salted or gritted in icy conditions, potentially making them dangerous or unrideable.
Seville, Spain is an example of what is possible on a city scale when a large investment is made in cycling infrastructure over a short period of time. In 2006 there were around 6000 bike trips made daily in the city of around 700,000. By 2009 there were about 50,000 daily bike trips. During those three years 8 urban bike paths totaling 70 km were built; the city centre was closed to motorised traffic; school projects were funded to create safe school paths; traffic calming measures were provided in school districts and the bicycle sharing system ‘Sevici’ was launched. The combination of all these factors helped to create a dramatic change in cycling rates.
After a certain trip modal share it may take more than just installing cycle tracks to create large increases in cycle rates. Cycling rates in the Netherlands peaked in the 1960s and dropped dramatically until the mid 1970s. The decline in bicycle use was "not only caused by mass motorization but also by the related, fairly unco-ordinated process of urbanization and by scores of social, spatial and economic developments", such as a decrease in population density and increased travel distances. The bicycle was almost completely left out of the national government's vision. Certain cities, however, such as Amsterdam and Eindhoven were slowly implementing more bicycle-positive policies: for example, bike-only streets and allowing cyclists to ignore one way streets. Throughout the 70s cycling rates increased, but the investments in bike paths made in the subsequent period had less effect. Between the late 1980s and early 1990s the Netherlands spent 1.5 billion guilders (US$945 million) on cycling infrastructure, yet cycling levels stayed practically the same.
When the flagship Delft Bicycle Route project was evaluated, the Institute for Road Safety Research claimed that the results were "not very positive: bicycle use had not increased, neither had the road safety. A route network of bicycle facilities has, apparently, no added value for bicycle use or road safety". The study by Louisse, C.J. et al. however, did find that "[a]lthough the total number of victims among cyclists did not decline, the percentage of fatalities and severely injured did drop dramatically." A more comprehensive policy change in addition to bicycle routes, on the other hand, helped to raise the cycling rates in Groningen where 75% of all traffic is by bike or foot. Groningen focused on land use policy, city planning and economic policy changes to achieve very high cycling rates.
In the UK, a ten-year study of the effect of cycle facilities in eight towns and cities found no evidence that they had resulted in any diversion from other transport modes. The construction of of "Strategic cycle network" in Dublin has been accompanied by a 15% fall in commuter cycling and 40% falls in cycling by second and third level students.
In some locales bike traffic increases first and bike paths and lanes are installed in order to catch up to the demand. For instance, bike planning in Davis, California was driven by the prior existence of a "dramatic volume" of cyclists in the 1960s. Research on the German bicycle boom of the 1980s paints a picture of German local authorities struggling to keep up with the growth of cycling rather than this growth being driven by their interventions. In relation to the UK, it has been argued that locally high levels of cycling are more likely to result from factors other than cycle facilities. These include an existing cycling culture and historically high levels of cycle use, compact urban forms, lack of hills and lack of barriers such as high speed intersections.
However, U.S.-based observers have stated that "the provision of separate cycling facilities" appears to be one of the keys to the achieving of high levels of cycling in the Netherlands, Denmark and Germany.
In 1996 the UK Cyclists' Touring Club and the Institute of Highways and Transportation jointly produced a set of Cycle-Friendly Infrastructure guidelines that placed segregated cycling facilities at the bottom of the hierarchy of measures designed to promote cycling. Planners at the Directorate Infrastructure Traffic and Transport in Amsterdam place cyclists and motorists together on roads with speed limits at or below , and segregate them through bicycle lanes at higher limits. This is in a context where most of the measures prioritised by Cycle-Friendly Infrastructure (HGV restrictions, area-wide traffic calming, speed limit enforcement etc.) are already in place - see Utility cycling for more detail.
Where available these routes often make use of abandoned railway corridors - see picture right of Mosel Maar cycle route. A prominent example in the UK is the Bristol & Bath Railway Path, a bike path that is part of National Cycle Route 4. Other UK examples include The Ebury Way Cycle Path, The Alban Way, the Hillend Loch Railway Path and the Nicky Line. In 2003 the longest continuous bike path in Europe was opened, along the Albacete-Valdeganga highway in Spain, a distance of . Bogota's Bike Paths Network or "Ciclo-Ruta" in Spanish, designed and built during the administration of Mayor Enrique Peñalosa attracts significant recreational use.
.]]
The relative safety of bike paths that follow independent rights-of-way closed to motorized traffic is difficult to assess. In terms of car/bicycle collisions, this is clearly mediated by how the bike path network rejoins the main road network. In the English town of Milton Keynes, a study showed that cyclists using the off-road Milton Keynes redway system had on a per-journey basis a significantly higher rate of fatal car-bicycle collisions at path/roadway crossings than cyclists on ordinary roads.
The consequences of other risks — falls, cyclist–cyclist collisions and cyclist–pedestrian collisions — are frequently not recorded in official accident figures and may be available only via local hospital surveys. As a general rule those bike paths with the highest perceived safety tend to be those engineered on the assumption of vehicular rather than pedestrian traffic. Thus the most popular examples tend to be converted road or railway alignments or constructed to the same standards used by road and railway engineers.
Category:Road infrastructure Category:Transportation planning Category:Cycling safety Category:Car-free areas
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.