In mathematics, a sequence is an ordered list of objects (or events). Like a set, it contains members (also called elements or terms), and the number of terms (possibly infinite) is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence. A sequence is a discrete function.
For example, (C, R, Y) is a sequence of letters that differs from (Y, C, R), as the ordering matters. Sequences can be finite, as in this example, or infinite, such as the sequence of all even positive integers (2, 4, 6,...). Finite sequences are sometimes known as strings or words and infinite sequences as streams. The empty sequence ( ) is included in most notions of sequence, but may be excluded depending on the context.
In addition to identifying the elements of a sequence by their position, such as "the 3rd element", elements may be given names for convenient referencing. For example a sequence might be written as (a1, a2, a2, … ), or (b0, b1, b2, … ), or (c0, c2, c4, … ), depending on what is useful in the application.
A sequence of a finite length n is also called an n-tuple. Finite sequences include the empty sequence ( ) that has no elements.
A function from all integers into a set is sometimes called a bi-infinite sequence or two-way infinite sequence. An example is the bi-infinite sequence of all even integers ( … , -4, -2, 0, 2, 4, 6, 8… ).
The sequence is multiplicative if f(xy) = f(x)f(y) for all x,y such that x and y are coprime.
If the terms of the sequence are a subset of an ordered set, then a monotonically increasing sequence is one for which each term is greater than or equal to the term before it; if each term is strictly greater than the one preceding it, the sequence is called strictly monotonically increasing. A monotonically decreasing sequence is defined similarly. Any sequence fulfilling the monotonicity property is called monotonic or monotone. This is a special case of the more general notion of monotonic function.
The terms nondecreasing and nonincreasing are used in order to avoid any possible confusion with strictly increasing and strictly decreasing, respectively.
If the terms of a sequence are integers, then the sequence is an integer sequence. If the terms of a sequence are polynomials, then the sequence is a polynomial sequence.
If S is endowed with a topology, then it becomes possible to consider convergence of an infinite sequence in S. Such considerations involve the concept of the limit of a sequence.
If A is a set, the free monoid over A (denoted A*) is a monoid containing all the finite sequences (or strings) of zero or more elements drawn from A, with the binary operation of concatenation. The free semigroup A+ is the subsemigroup of A* containing all elements except the empty sequence.
It may be convenient to have the sequence start with an index different from 1 or 0. For example, the sequence defined by xn = 1/log(n) would be defined only for n ≥ 2. When talking about such infinite sequences, it is usually sufficient (and does not change much for most considerations) to assume that the members of the sequence are defined at least for all indices large enough, that is, greater than some given N.
The most elementary type of sequences are numerical ones, that is, sequences of real or complex numbers. This type can be generalized to sequences of elements of some vector space. In analysis, the vector spaces considered are often function spaces. Even more generally, one can study sequences with elements in some topological space.
:
Formally, this pair of sequences comprises the series with the terms x1, x2, x3, ..., which is denoted as
:
If the sequence of partial sums is convergent, one also uses the infinite sum notation for its limit. For more details, see series.
An infinite binary sequence can represent a formal language (a set of strings) by setting the n th bit of the sequence to 1 if and only if the n th string (in shortlex order) is in the language. Therefore, the study of complexity classes, which are sets of languages, may be regarded as studying sets of infinite sequences.
An infinite sequence drawn from the alphabet {0, 1, ..., b−1} may also represent a real number expressed in the base-b positional number system. This equivalence is often used to bring the techniques of real analysis to bear on complexity classes.
In particular, the term sequence space usually refers to a linear subspace of the set of all possible infinite sequences with elements in .
One can interpret singly infinite sequences as elements of the semigroup ring of the natural numbers , and doubly infinite sequences as elements of the group ring of the integers . This perspective is used in the Cauchy product of sequences.
Category:Elementary mathematics * Category:Combinatorics on words
ar:متتالية bs:Niz bg:Редица ca:Successió matemàtica cs:Posloupnost da:Talfølge de:Folge (Mathematik) et:Jada el:Ακολουθία es:Sucesión matemática eo:Vico eu:Segida (matematika) fa:دنباله fr:Suite (mathématiques) gl:Sucesión (matemáticas) xal:Даралт ko:수열 hr:Niz io:Sequo is:Runa it:Successione (matematica) he:סדרה hy:Հաջորդականություն (մաթեմատիկական) ka:მიმდევრობა la:Sequentia (mathematica) hu:Sorozat (matematika) mk:Низа ml:അനുക്രമം ms:Jujukan nl:Rij (wiskunde) ja:列 (数学) no:Følge (matematikk) pms:Sequensa pl:Ciąg (matematyka) pt:Sequência (matemática) ro:Șir (matematică) ru:Последовательность scn:Succissioni (matimatica) simple:Sequence sk:Postupnosť (matematika) sl:Zaporedje sr:Низ fi:Lukujono sv:Följd ta:தொடர்வரிசை th:ลำดับ tr:Dizi (terim) uk:Послідовність (математика) ur:متوالیہ (ریاضی) vi:Dãy (toán học) zh:序列This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.