This article is about the chemical element. For coins known as "nickels" and other uses, see
Nickel (disambiguation).
|
Appearance |
lustrous, metallic, and silver with a gold tinge
|
General properties |
Name, symbol, number |
nickel, Ni, 28 |
Pronunciation |
/ˈnɪkəl/ |
Element category |
transition metal |
Group, period, block |
10, 4, d |
Standard atomic weight |
58.6934(4)(2) |
Electron configuration |
[Ar] 4s2 3d8 or [Ar] 4s1 3d9 (see text) |
Electrons per shell |
2, 8, 16, 2 or 2, 8, 17, 1 (Image) |
Physical properties |
Phase |
solid |
Density (near r.t.) |
8.908 g·cm−3 |
Liquid density at m.p. |
7.81 g·cm−3 |
Melting point |
1728 K, 1455 °C, 2651 °F |
Boiling point |
3186 K, 2913 °C, 5275 °F |
Heat of fusion |
17.48 kJ·mol−1 |
Heat of vaporization |
377.5 kJ·mol−1 |
Molar heat capacity |
26.07 J·mol−1·K−1 |
Vapor pressure |
P (Pa) |
1 |
10 |
100 |
1 k |
10 k |
100 k |
at T (K) |
1783 |
1950 |
2154 |
2410 |
2741 |
3184 |
|
Atomic properties |
Oxidation states |
4[1], 3, 2, 1 [2], -1
(mildly basic oxide) |
Electronegativity |
1.91 (Pauling scale) |
Ionization energies
(more) |
1st: 737.1 kJ·mol−1 |
2nd: 1753.0 kJ·mol−1 |
3rd: 3395 kJ·mol−1 |
Atomic radius |
124 pm |
Covalent radius |
124±4 pm |
Van der Waals radius |
163 pm |
Miscellanea |
Crystal structure |
face-centered cubic |
Magnetic ordering |
ferromagnetic |
Electrical resistivity |
(20 °C) 69.3 nΩ·m |
Thermal conductivity |
90.9 W·m−1·K−1 |
Thermal expansion |
(25 °C) 13.4 µm·m−1·K−1 |
Speed of sound (thin rod) |
(r.t.) 4900 m·s−1 |
Young's modulus |
200 GPa |
Shear modulus |
76 GPa |
Bulk modulus |
180 GPa |
Poisson ratio |
0.31 |
Mohs hardness |
4.0 |
Vickers hardness |
638 MPa |
Brinell hardness |
700 MPa |
CAS registry number |
7440-02-0 |
Most stable isotopes |
Main article: Isotopes of nickel |
|
· r |
Nickel ( /ˈnɪkəl/ NI-kəl) is a chemical element with the chemical symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel belongs to the transition metals and is hard and ductile. Pure nickel shows a significant chemical activity that can be observed when nickel is powdered to maximize the exposed surface area on which reactions can occur, but larger pieces of the metal are slow to react with air at ambient conditions due to the formation of a protective oxide surface. Even then, nickel is reactive enough with oxygen so that native nickel is rarely found on Earth's surface, being mostly confined to the interiors of larger nickel–iron meteorites that were protected from oxidation during their time in space. On Earth, such native nickel is always found in combination with iron, a reflection of those elements' origin as major end products of supernova nucleosynthesis. An iron–nickel mixture is thought to compose Earth's inner core.[3]
The use of nickel (as a natural meteoric nickel–iron alloy) has been traced as far back as 3500 BC. Nickel was first isolated and classified as a chemical element in 1751 by Axel Fredrik Cronstedt, who initially mistook its ore for a copper mineral. The element name comes from a mischievous sprite of German miner's mythology, Nickel (similar to Old Nick), that personified the fact that copper-nickel ores resisted refinement into copper. Nickel's most important modern ore minerals are laterites, including limonite, garnierite, and pentlandite. Major production sites include Sudbury region in Canada (which is thought to be of meteoric origin), New Caledonia in the Pacific and Norilsk in Russia.
Because of nickel's slow rate of oxidation at room temperature, it is considered corrosion-resistant. Historically this has led to its use for plating metals such as iron and brass, to its use for chemical apparatus, and its use in certain alloys that will retain a high silvery polish, such as German silver. About 6% of world nickel production is still used for corrosion-resistant pure-nickel plating. Nickel was once a common component of coins, but has largely been replaced by cheaper iron for this purpose, especially since the metal has proven to be a skin allergen for some people.
Nickel is one of the four elements that are ferromagnetic around room temperature. Alnico permanent magnets based partly on nickel are of intermediate strength between iron-based permanent magnets and rare-earth magnets. The metal is chiefly valuable in the modern world for the alloys it forms; about 60% of world production is used in nickel-steels (particularly stainless steel). Other common alloys, as well as some new superalloys, make up most of the remainder of world nickel use, with chemical uses for nickel compounds consuming less than 3% of production.[4] As a compound, nickel has a number of niche chemical manufacturing uses, such as a catalyst for hydrogenation. Enzymes of some microorganisms and plants contain nickel as an active center, which makes the metal an essential nutrient for them.
Nickel is a silvery-white metal with a slight golden tinge that takes a high polish. It is one of only four elements that are magnetic at or near room temperature, the others being iron, cobalt and gadolinium. Its Curie temperature is 355 °C, meaning that bulk nickel is non-magnetic above this temperature.[5] The unit cell of nickel is a face centered cube with the lattice parameter of 0.352 nm giving an atomic radius of 0.124 nm. Nickel belongs to the transition metals and is hard and ductile.
The nickel atom has two electron configurations, [Ar] 4s2 3d8 and [Ar] 4s1 3d9, which are very close in energy, where the symbol [Ar] refers to the argon-like core structure. There is some disagreement as to which should be considered the lowest energy configuration.[6] Chemistry textbooks quote the electron configuration of nickel as [Ar] 4s2 3d8,[7] or equivalently as [Ar] 3d8 4s2.[8] This configuration agrees with the Madelung energy ordering rule, which predicts that 4s is filled before 3d. It is supported by the experimental fact that the lowest energy state of the nickel atom is a 4s2 3d8 energy level, specifically the 3d8(3F) 4s2 3F, J=4 level.[9]
However each of these two configurations in fact gives rise to a set of states at different energies.[9] The two sets of energies overlap, and the average energy of states having configuration [Ar] 4s1 3d9 is in fact lower than the average energy of states having configuration [Ar] 4s2 3d8. For this reason the research literature on atomic calculations quotes the ground state configuration of nickel as 4s1 3d9.[6]
Naturally occurring nickel is composed of 5 stable isotopes; 58Ni, 60Ni, 61Ni, 62Ni and 64Ni with 58Ni being the most abundant (68.077% natural abundance). 62Ni is the most stable nuclide of all the existing elements, with binding energy greater than both 56Fe, often incorrectly cited as most stable, and 58Fe.[10] 18 radioisotopes have been characterised with the most stable being 59Ni with a half-life of 76,000 years, 63Ni with a half-life of 100.1 years, and 56Ni with a half-life of 6.077 days. All of the remaining radioactive isotopes have half-lives that are less than 60 hours and the majority of these have half-lives that are less than 30 seconds. This element also has one meta state.[11]
Nickel-56 is produced by the silicon burning process and later set free in large quantities during type Ia supernovae. The shape of the light curve of these supernovae at intermediate to late-times corresponds to the decay via electron capture of nickel-56 to cobalt-56 and ultimately to iron-56.[12] Nickel-59 is a long-lived cosmogenic radionuclide with a half-life of 76,000 years. 59Ni has found many applications in isotope geology. 59Ni has been used to date the terrestrial age of meteorites and to determine abundances of extraterrestrial dust in ice and sediment. Nickel-60 is the daughter product of the extinct radionuclide 60Fe, which decays with a half-life of 2.6 million years. Because 60Fe has such a long half-life, its persistence in materials in the solar system at high enough concentrations may have generated observable variations in the isotopic composition of 60Ni. Therefore, the abundance of 60Ni present in extraterrestrial material may provide insight into the origin of the solar system and its early history. Nickel-62 has the highest binding energy per nucleon of any isotope for any element (8.7946 Mev/nucleon).[13] Isotopes heavier than 62Ni cannot be formed by nuclear fusion without losing energy. 48Ni, discovered in 1999, is the most proton-rich heavy element isotope known. With 28 protons and 20 neutrons 48Ni is "double magic" (like 208Pb) and therefore unusually stable.[11][14]
The isotopes of nickel range in atomic weight from 48 u (48Ni) to 78 u (78Ni). Nickel-78's half-life was recently measured to be 110 milliseconds and is believed to be an important isotope involved in supernova nucleosynthesis of elements heavier than iron.[15]
Widmanstätten pattern showing the two forms of nickel-iron, Kamacite and Taenite, in an octahedrite meteorite
On Earth, nickel occurs most often in combination with sulfur and iron in pentlandite, with sulfur in millerite, with arsenic in the mineral nickeline, and with arsenic and sulfur in nickel galena.[16] Nickel is commonly found in iron meteorites as the alloys kamacite and taenite.
The bulk of the nickel mined comes from two types of ore deposits. The first are laterites where the principal ore minerals are nickeliferous limonite: (Fe, Ni)O(OH) and garnierite (a hydrous nickel silicate): (Ni, Mg)3Si2O5(OH)4. The second are magmatic sulfide deposits where the principal ore mineral is pentlandite: (Ni, Fe)9S8.
In terms of supply, the Sudbury region of Ontario, Canada, produces about 30% of the world's supply of nickel. The Sudbury Basin deposit is theorized to have been created by a meteorite impact event early in the geologic history of Earth. Russia contains about 40% of the world's known resources at the Norilsk deposit in Siberia. The Russian mining company MMC Norilsk Nickel obtains the nickel and the associated palladium for world distribution. Other major deposits of nickel are found in New Caledonia, France, Australia, Cuba, and Indonesia. Deposits found in tropical areas typically consist of laterites, which are produced by the intense weathering of ultramafic igneous rocks and the resulting secondary concentration of nickel bearing oxide and silicate minerals.
Based on geophysical evidence, most of the nickel on Earth is postulated to be concentrated in the Earth's outer core and inner core. Kamacite and taenite are naturally occurring alloys of iron and nickel. For kamacite the alloy is usually in the proportion of 90:10 to 95:5 although impurities such as cobalt or carbon may be present, while for taenite the nickel content is between 20% and 65%. Kamacite and taenite occur in nickel iron meteorites.[17]
The most common oxidation state of nickel is +2, but compounds of Ni0, Ni+, and Ni3+ are well known, and Ni4+ has been demonstrated.[18]
Tetracarbonylnickel (Ni(CO)4), discovered by Ludwig Mond,[19] is a volatile liquid at room temperature. On heating, the complex decomposes back to nickel and carbon monoxide:
- Ni(CO)4 aFailed to parse (Missing texvc executable; please see math/README to configure.): \overrightarrow{\leftarrow}
Ni + 4 CO
This behavior is exploited in the Mond process for purifying nickel, as described above. The related nickel(0) complex bis(cyclooctadiene)nickel(0) is a useful catalyst in organonickel chemistry due to the easily displaced cod ligands.
Nickel(II) forms compounds with all common anions, i.e. the sulfide, sulfate, carbonate, hydroxide, carboxylates, and halides. Nickel(II) sulfate is produced in large quantities by dissolving nickel metal or oxides in sulfuric acid. It exists as both a hexa- and heptahydrates.[20] This compound is useful for electroplating nickel.
The four halogens form nickel compounds, all of which adopt octahedral geometries. Nickel(II) chloride is most common, and its behavior is illustrative of the other halides. Nickel(II) chloride is produced by dissolving nickel residues in hydrochloric acid. The dichloride is usually encountered as the green hexahydrate, but it can be dehydrated to give the yellow anhydrous NiCl2. Some tetracoordinate nickel(II) complexes form both tetrahedral and square planar geometries. The tetrahedral complexes are paramagnetic and the square planar complexes are diamagnetic. This equilibrium as well as the formation of octahedral complexes contrasts with the behavior of the divalent complexes of the heavier group 10 metals, palladium(II) and platinum(II), which tend to adopt only square-planar complexes.[18]
Nickelocene is known; it has an electron count of 20, making it relatively unstable.
For simple compounds, nickel(III) and nickel(IV) only occurs with fluoride and oxides. Nickel(III) oxide is used as the cathode in many rechargeable batteries, including nickel-cadmium, nickel-iron, nickel hydrogen, and nickel-metal hydride, and used by certain manufacturers in Li-ion batteries.[21]
Because the ores of nickel are easily mistaken for ores of silver, understanding of this metal and its use dates to relatively recent times. However, the unintentional use of nickel is ancient, and can be traced back as far as 3500 BC. Bronzes from what is now Syria had contained up to 2% nickel.[22] Further, there are Chinese manuscripts suggesting that "white copper" (cupronickel, known as baitong) was used there between 1700 and 1400 BC. This Paktong white copper was exported to Britain as early as the 17th century, but the nickel content of this alloy was not discovered until 1822.[23]
In medieval Germany, a red mineral was found in the Erzgebirge (Ore Mountains) that resembled copper ore. However, when miners were unable to extract any copper from it, they blamed a mischievous sprite of German mythology, Nickel (similar to Old Nick), for besetting the copper. They called this ore Kupfernickel from the German Kupfer for copper.[24][25][26][27] This ore is now known to be nickeline or niccolite, a nickel arsenide. In 1751, Baron Axel Fredrik Cronstedt was attempting to extract copper from kupfernickel and obtained instead a white metal that he named after the spirit which had given its name to the mineral, nickel.[28] In modern German, Kupfernickel or Kupfer-Nickel designates the alloy cupronickel.
After its discovery, the only source for nickel was the rare Kupfernickel, but, from 1824 on, the nickel was obtained as byproduct of cobalt blue production. The first large-scale producer of nickel was Norway, which exploited nickel-rich pyrrhotite from 1848 on. The introduction of nickel in steel production in 1889 increased the demand for nickel, and the nickel deposits of New Caledonia, which were discovered in 1865, provided most of the world's supply between 1875 and 1915. The discovery of the large deposits in the Sudbury Basin, Canada in 1883, in Norilsk-Talnakh, Russia in 1920, and in the Merensky Reef, South Africa in 1924 made large-scale production of nickel possible.[23]
Dutch coins made of pure nickel
Nickel has been a component of coins since the mid-19th century. In the United States, the term "nickel" or "nick" was originally applied to the copper-nickel Flying Eagle cent, which replaced copper with 12% nickel 1857–58, then the Indian Head cent of the same alloy from 1859–1864. Still later in 1865, the term designated the three-cent nickel, with nickel increased to 25%. In 1866, the five-cent shield nickel (25% nickel, 75% copper) appropriated the designation. Along with the alloy proportion, this term has been used to the present in the United States. Coins of nearly pure nickel were first used in 1881 in Switzerland, and more notably 99.9% nickel five-cent coins were struck in Canada (the world's largest nickel producer at the time) during non-war years from 1922–1981, and their metal content made these coins magnetic.[29] During the wartime period 1942–45, more or all nickel was removed from Canadian and U.S. coins, due to nickel's war-critical use in armor.[25][30] Canada switched alloys again to plated steel during the Korean war, but was forced to stop making pure nickel "nickels" in 1981, reserving the pure 99.9% nickel alloy after 1968 only to its higher-value coins. Finally, in the 21st century, with rising nickel prices, most countries that formerly used nickel in their coins have abandoned the metal for cost reasons, and the U.S. five cents remains one of the few coins in which the metal is still used, save for exterior plating.[31]
World nickel production in metric tons, in 2005. The Russian Federation is the largest producer, followed by Canada.
In 2005, Russia was the largest producer of nickel with about one-fifth world share closely followed by Canada, Australia, and Indonesia, as reported by the British Geological Survey. A nickel deposit in western Turkey had been exploited, with this location being especially convenient for European smelters, steelmakers, and factories. The one locality in the United States where nickel was commercially mined is Riddle, Oregon, where several square miles of nickel-bearing garnierite surface deposits are located. The mine closed in 1987.[32][33] The Eagle mine project is a proposed new nickel mine in Michigan's upper peninsula.
Nickel is recovered through extractive metallurgy. Nickel is extracted from its ores by conventional roasting and reduction processes that yield a metal of greater than 75% purity. In many stainless steel applications, 75% pure nickel can be used without further purification, depending on the composition of the impurities.
Most sulfide ores have traditionally been processed using pyrometallurgical techniques to produce a matte for further refining. Recent advances in hydrometallurgy have resulted in significant nickel purification using these processes. Most sulfide deposits have traditionally been processed by concentration through a froth flotation process followed by pyrometallurgical extraction. In hydrometallurgical processes, nickel sulfide ores undergo flotation (differential flotation if Ni/Fe ratio is too low) and then smelted. After producing the nickel matte, further processing is done via the Sherritt-Gordon process. First, copper is removed by adding hydrogen sulfide, leaving a concentrate of only cobalt and nickel. Then, solvent extraction is used to separate the cobalt and nickel, with the final nickel concentration greater than 99%.
A second common form of further refining involves the leaching of the metal matte into a nickel salt solution, followed by the electro-winning of the nickel from solution by plating it onto a cathode as electrolytic nickel.
Highly purified nickel spheres made in the Mond process.
Main article:
Mond process
Purification of nickel oxides to obtain the purest metal is performed via the Mond process, which increases the nickel concentrate to greater than 99.99% purity.[34] This process was patented by L. Mond and has been in industrial use since before the beginning of the 20th century. In the process, nickel is reacted with carbon monoxide at around 40–80 °C to form nickel carbonyl in the presence of a sulfur catalyst. Iron gives iron pentacarbonyl too, but this reaction is slow. If necessary, it may be separated by distillation. Dicobalt octacarbonyl is also formed in this process, but it decomposes to tetracobalt dodecacarbonyl at the reaction temperature to give a non-volatile solid.[4]
Nickel is re-obtained from the nickel carbonyl by one of two processes. It may be passed through a large chamber at high temperatures in which tens of thousands of nickel spheres, called pellets, are constantly stirred. It then decomposes depositing pure nickel onto the nickel spheres. Alternatively, the nickel carbonyl may be decomposed in a smaller chamber at 230 °C to create fine nickel powder. The resultant carbon monoxide is re-circulated and reused through the process. The highly pure nickel produced by this process is known as "carbonyl nickel".[35]
The market price of nickel surged throughout 2006 and the early months of 2007; as of April 5, 2007, the metal was trading at 52,300 USD/tonne or 1.47 USD/oz.[36] The price subsequently fell dramatically from these peaks, and as of 19 January 2009 the metal was trading at 10,880 USD/tonne.[36]
The US nickel coin contains 0.04 oz (1.25 g) of nickel, which at the April 2007 price was worth 6.5 cents, along with 3.75 grams of copper worth about 3 cents, making the metal value over 9 cents. Since the face value of a nickel is 5 cents, this made it an attractive target for melting by people wanting to sell the metals at a profit. However, the United States Mint, in anticipation of this practice, implemented new interim rules on December 14, 2006, subject to public comment for 30 days, which criminalize the melting and export of cents and nickels.[37] Violators can be punished with a fine of up to $10,000 and/or imprisoned for a maximum of five years.
As of September 16, 2011, the melt value of a U.S. nickel is $0.0600409, which is 20% higher than the face value.[38]
Nickel superalloy jet engine (
RB199) turbine blade
The fraction of global nickel production presently used for various applications is as follows: 60% for making nickel steels; 14% in nickel-copper alloys and nickel silver; 9% to make malleable nickel, nickel clad, Inconel, and other superalloys; 6% in plating; 3% for nickel cast irons; 3% in heat and electric resistance alloys, such as Nichrome; 2% for nickel brasses and bronzes; 3% in all other applications combined.[39][40]
Nickel is used in many specific and recognizable industrial and consumer products, including stainless steel, alnico magnets, coinage, rechargeable batteries, electric guitar strings, microphone capsules, and special alloys. It is also used for plating and as a green tint in glass. Nickel is preeminently an alloy metal, and its chief use is in the nickel steels and nickel cast irons, of which there are many varieties. It is also widely used in many other alloys, such as nickel brasses and bronzes, and alloys with copper, chromium, aluminium, lead, cobalt, silver, and gold (Inconel, Incoloy, Monel, Nimonic).[41]
A "horseshoe magnet" made of
alnico nickel alloy. The composition of alnico alloys is typically 8–12% Al, 15–26% Ni, 5–24% Co, up to 6% Cu, up to 1% Ti, and the balance is Fe. The development of alnico began in 1931 when it was discovered that an alloy of iron, nickel, and aluminum had a coercivity double that of the best magnet steels of the time. Alnico magnets are now being replaced by
rare earth magnets in many applications
Because of its resistance to corrosion, nickel has been occasionally used historically as a substitute for decorative silver. Nickel was also occasionally used in some countries after 1859 as a cheap coinage metal (see above) but beginning the later years of the 20th century has largely replaced by cheaper stainless steel (i.e., iron) alloys, except notably in the United States.
Nickel is an excellent alloying agent for certain other precious metals, and so used in the so-called fire assay, as a collector of platinum group elements (PGE). As such, nickel is capable of full collection of all 6 PGE elements from ores, in addition to partial collection of gold. High-throughput nickel mines may also engage in PGE recovery (primarily platinum and palladium); examples are Norilsk in Russia and the Sudbury Basin in Canada.
Nickel foam or nickel mesh is used in gas diffusion electrodes for alkaline fuel cells.[42][43]
Nickel and its alloys are frequently used as catalysts for hydrogenation reactions. Raney nickel, a finely-divided nickel-aluminium alloy, is one common form, however related catalysts are also often used, including related 'Raney-type' catalysts.
Nickel is a naturally magnetostrictive material, meaning that, in the presence of a magnetic field, the material undergoes a small change in length.[44] In the case of nickel, this change in length is negative (contraction of the material), which is known as negative magnetostriction and is on the order of 50 ppm.
Nickel is used as a binder in the cemented tungsten carbide or hardmetal industry and used in proportions of six to 12% by weight. Nickel can make the tungsten carbide magnetic and adds corrosion-resistant properties to the cemented tungsten carbide parts, although the hardness is lower than those of parts made with cobalt binder.[45]
Although not recognized until the 1970s, nickel plays important roles in the biology of microorganisms and plants.[46] In fact, urease (an enzyme that assists in the hydrolysis of urea) contains nickel. The NiFe-hydrogenases contain nickel in addition to iron-sulfur clusters. Such [NiFe]-hydrogenases characteristically oxidise H2. A nickel-tetrapyrrole coenzyme, Cofactor F430, is present in the methyl coenzyme M reductase, which powers methanogenic archaea. One of the carbon monoxide dehydrogenase enzymes consists of an Fe-Ni-S cluster.[47] Other nickel-containing enzymes include a rare bacterial class of superoxide dismutase[48] and glyoxalase I enzymes in bacteria and several parasitic eukaryotic trypanosomal parasites [49] (this enzyme in higher organisms, including yeast and mammals, uses divalent zinc, Zn2+).[50][51][52][53][54]
In the US, the minimal risk level of nickel and its compounds is set to 0.2 µg/m3 for inhalation during 15–364 days.[55] Nickel sulfide fume and dust are believed to be carcinogenic, and various other nickel compounds may be as well.[56][57] Nickel carbonyl, [Ni(CO)4], is an extremely toxic gas. The toxicity of metal carbonyls is a function of both the toxicity of the metal as well as the carbonyl's ability to give off highly toxic carbon monoxide gas, and this one is no exception; nickel carbonyl is also explosive in air.[58][59] Sensitized individuals may show an allergy to nickel, affecting their skin, also known as dermatitis. Sensitivity to nickel may also be present in patients with pompholyx. Nickel is an important cause of contact allergy, partly due to its use in jewellery intended for pierced ears.[60] Nickel allergies affecting pierced ears are often marked by itchy, red skin. Many earrings are now made nickel-free due to this problem. The amount of nickel allowed in products that come into contact with human skin is regulated by the European Union. In 2002, researchers found amounts of nickel being emitted by 1 and 2 Euro coins far in excess of those standards. This is believed to be due to a galvanic reaction.[61]
Nickel was voted Allergen of the Year in 2008 by the American Contact Dermatitis Society.[62]
Reports also showed that both the nickel-induced activation of hypoxia-inducible factor (HIF-1) and the up-regulation of hypoxia-inducible genes are due to depleted intracellular ascorbate levels. The addition of ascorbate to the culture medium increased the intracellular ascorbate level and reversed both the metal-induced stabilization of HIF-1- and HIF-1α-dependent gene expression.[63][64]
- ^ M. Carnes et al. (2009). "A Stable Tetraalkyl Complex of Nickel(IV)". Angewandte Chemie International Edition 48: 3384. DOI:10.1002/anie.200804435.
- ^ S. Pfirrmann et al. (2009). "A Dinuclear Nickel(I) Dinitrogen Complex and its Reduction in Single-Electron Steps". Angewandte Chemie International Edition 48: 3357. DOI:10.1002/anie.200805862.
- ^ Lars Stixrude; Evgeny Waserman and Ronald Cohen (November 1997). "Composition and temperature of Earth's inner core". Journal of Geophysical Research (American Geophysical Union) 102 (B11): 24729–24740. Bibcode 1997JGR...10224729S. DOI:10.1029/97JB02125. http://www.agu.org/pubs/crossref/1997/97JB02125.shtml.
- ^ a b
- ^ Kittel, Charles (1996). Introduction to Solid State Physics. Wiley. p. 449. ISBN 0-471-14286-7.
- ^ a b Scerri, Eric R. (2007). The periodic table: its story and its significance. Oxford University Press. pp. 239–240. ISBN 0-19-530573-6. http://books.google.com/?id=SNRdGWCGt1UC&pg=PA239.
- ^ G.L. Miessler and D.A. Tarr, "Inorganic Chemistry" (2nd ed., Prentice-Hall 1999) p.38
- ^ R.H. Petrucci et al “General Chemistry” (8th ed., Prentice-Hall 2002) p.950
- ^ a b NIST Atomic Spectrum Database To read the nickel atom levels, type “Ni I” in the Spectrum box and click on Retrieve data.
- ^ Fewell, M. P.. The atomic nuclide with the highest mean binding energy. American Journal of Physics 63 (7): 653–58. . URL:http://adsabs.harvard.edu/abs/1995AmJPh..63..653F. Accessed: 2011-03-22. (Archived by WebCite® at http://www.webcitation.org/5xNHry2gq)
- ^ a b Audi, Georges (2003). "The NUBASE Evaluation of Nuclear and Decay Properties". Nuclear Physics A (Atomic Mass Data Center) 729: 3–128. Bibcode 2003NuPhA.729....3A. DOI:10.1016/j.nuclphysa.2003.11.001.
- ^ Pagel, Bernard Ephraim Julius. "Further burning stages: evolution of massive stars". Nucleosynthesis and chemical evolution of galaxies. pp. 154–160. ISBN 978-0-521-55958-4.
- ^ "The Most Tightly Bound Nuclei". http://hyperphysics.phy-astr.gsu.edu/hbase/nucene/nucbin2.html#c1. Retrieved 2008-11-19.
- ^ W, P (October 23, 1999). "Twice-magic metal makes its debut – isotope of nickel". Science News. http://www.findarticles.com/p/articles/mi_m1200/is_17_156/ai_57799535. Retrieved 2006-09-29.
- ^ Castelvecchi, Davide (2005-04-22). "Atom Smashers Shed Light on Supernovae, Big Bang". http://www.skyandtelescope.com/news/3310246.html?page=1&c=y. Retrieved 2008-11-19.
- ^ National Pollutant Inventory – Nickel and compounds Fact Sheet. Npi.gov.au. Retrieved on 2012-01-09.
- ^ Rasmussen, K. L.; Malvin, D. J.; Wasson, J. T. (1988). "Trace element partitioning between taenite and kamacite – Relationship to the cooling rates of iron meteorites". Meteoritics 23: a107–112. Bibcode 1988Metic..23..107R.
- ^ a b Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements (2nd ed.). Butterworth–Heinemann. ISBN 0080379419.
- ^ "The Extraction of Nickel from its Ores by the Mond Process". Nature 59 (1516): 63. 1898. Bibcode 1898Natur..59...63.. DOI:10.1038/059063a0.
- ^ Keith Lascelles, Lindsay G. Morgan, David Nicholls, Detmar Beyersmann “Nickel Compounds” in Ullmann's Encyclopedia of Industrial Chemistry 2005, Wiley-VCH, Weinheim. doi:10.1002/14356007.a17_235.pub2
- ^ "Imara Corporation Launches; New Li-ion Battery Technology for High-Power Applications". Green Car Congress. 18 December 2008. http://www.greencarcongress.com/2008/12/imara-corporati.html.
- ^ Rosenberg, Samuel J (1968). Nickel and Its Alloys. National Bureau of Standards. http://handle.dtic.mil/100.2/ADA381960.
- ^ a b McNeil, Ian (1990). "The Emergence of Nickel". An Encyclopaedia of the History of Technology. Taylor & Francis. pp. 96–100. ISBN 978-0-415-01306-2.
- ^ Chambers Twentieth Century Dictionary, p888, W&R Chambers Ltd, 1977.
- ^ a b Baldwin, W. H. (1931). "The story of Nickel. I. How "Old Nick's" gnomes were outwitted". Journal of Chemical Education 8 (9): 1749. Bibcode 1931JChEd...8.1749B. DOI:10.1021/ed008p1749.
- ^ Baldwin, W. H. (1931). "The story of Nickel. II. Nickel comes of age". Journal of Chemical Education 8 (10): 1954. Bibcode 1931JChEd...8.1954B. DOI:10.1021/ed008p1954.
- ^ Baldwin, W. H. (1931). "The story of Nickel. III. Ore, matte, and metal". Journal of Chemical Education 8 (12): 2325. Bibcode 1931JChEd...8.2325B. DOI:10.1021/ed008p2325.
- ^ Weeks, Mary Elvira (1932). "The discovery of the elements: III. Some eighteenth-century metals". Journal of Chemical Education 9: 22. Bibcode 1932JChEd...9...22W. DOI:10.1021/ed009p22.
- ^ "Industrious, enduring–the 5-cent coin". Royal Canadian Mint. 2008. http://www.mint.ca/store/mint/learn/circulation-currency-1100028. Retrieved 2009-01-10.
- ^ Molloy, Bill (2001-11-08). "Trends of Nickel in Coins – Past, Present and Future". The Nickel Institute. Archived from the original on 2006-09-29. http://web.archive.org/web/20060929095200/http://www.nidi.org/index.cfm/ci_id/160.htm. Retrieved 2008-11-19. Canada used nickel plating on its five-cent coins in 1945
- ^ [1] Partial list of world coins that used nickel.
- ^ "The Nickel Mountain Project". Ore Bin 15 (10): 59–66. 1953. http://www.oregongeology.com/sub/publications/OG/OBv15n10.pdf.
- ^ "Environment Writer: Nickel". National Safety Council. 2006. http://www.environmentwriter.org/resources/backissues/chemicals/nickel.htm. Retrieved 2009-01-10.
- ^ Mond, L.; Langer, K.; Quincke, F. (1890). "Action of carbon monoxide on nickel". Journal of the Chemical Society 57: 749–753. DOI:10.1039/CT8905700749.
- ^ Neikov, Oleg D.; Naboychenko, Stanislav; Gopienko, Victor G and Frishberg, Irina V (15 January 2009). Handbook of Non-Ferrous Metal Powders: Technologies and Applications. Elsevier. pp. 371–. ISBN 978-1-85617-422-0. http://books.google.com/books?id=6aP3te2hGuQC&pg=PA371. Retrieved 9 January 2012.
- ^ a b "LME nickel price graphs". London Metal Exchange. http://www.lme.com/nickel_graphs.asp. Retrieved 2009-06-06.
- ^ United States Mint Moves to Limit Exportation & Melting of Coins, The United States Mint, press release, December 14, 2006
- ^ "United States Circulating Coinage Intrinsic Value Table". Coininflation.com. http://www.coinflation.com/. Retrieved 2009-09-11.
- ^ Kuck, Peter H.. "Mineral Commodity Summaries 2006: Nickel". United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/commodity/nickel/mcs-2008-nicke.pdf. Retrieved 2008-11-19.
- ^ Kuck, Peter H.. "Mineral Yearbook 2006: Nickel". United States Geological Survey. http://minerals.usgs.gov/minerals/pubs/commodity/nickel/myb1-2006-nicke.pdf. Retrieved 2008-11-19.
- ^ Davis, Joseph R (2000). "Uses of Nickel". ASM Specialty Handbook: Nickel, Cobalt, and Their Alloys. ASM International. pp. 7–13. ISBN 978-0-87170-685-0. http://books.google.com/?id=IePhmnbmRWkC.
- ^ Kharton, Vladislav V. (21 June 2011). Solid State Electrochemistry II: Electrodes, Interfaces and Ceramic Membranes. Wiley-VCH. pp. 166–. ISBN 978-3-527-32638-9. http://books.google.com/books?id=5n5Fwf5D2EMC&pg=PT166. Retrieved 9 January 2012.
- ^ Bidault, F.; Brett, D. J. L.; Middleton, P. H.; Brandon, N. P.. "A New Cathode Design for Alkaline Fuel Cells(AFCs)". Imperial College London. http://perso.ensem.inpl-nancy.fr/Olivier.Lottin/FDFC08/Bidault.pdf.
- ^ UCLA – Magnetostrictive Materials Overview. Aml.seas.ucla.edu. Retrieved on 2012-01-09.
- ^ Cheburaeva, R. F.; Chaporova, I. N.; Krasina, T. I. (1992). "Structure and properties of tungsten carbide hard alloys with an alloyed nickel binder". Soviet Powder Metallurgy and Metal Ceramics 31 (5): 423. DOI:10.1007/BF00796252.
- ^ Edited by Astrid Sigel, Helmut Sigel, and Roland K. O. Sigel (2008). Astrid Sigel, Helmut Sigel and Roland K. O. Sigel. ed. Nickel and Its Surprising Impact in Nature. Metal Ions in Life Sciences. 2. Wiley. ISBN 978-0-470-01671-8.
- ^ Jaouen, G. (2006). Bioorganometallics: Biomolecules, Labeling, Medicine. Wiley-VCH: Weinheim. ISBN 3-527-30990-X.
- ^ Szilagyi, R. K.; Bryngelson, P. A.; Maroney, M. J.; Hedman, B.; Hodgson, K. O.; Solomon, E. I. (2004). "S K-Edge X-ray Absorption Spectroscopic Investigation of the Ni-Containing Superoxide Dismutase Active Site: New Structural Insight into the Mechanism". Journal of the American Chemical Society 126 (10): 3018–3019. DOI:10.1021/ja039106v. PMID 15012109.
- ^ Greig N, Wyllie S, Vickers TJ, Fairlamb AH (2006). "Trypanothione-dependent glyoxalase I in Trypanosoma cruzi". Biochem. J. 400 (2): 217–23. DOI:10.1042/BJ20060882. PMC 1652828. PMID 16958620. http://www.biochemj.org/bj/400/0217/bj4000217.htm.
- ^ Aronsson A-C, Marmstål E, Mannervik B (1978). "Glyoxalase I, a zinc metalloenzyme of mammals and yeast". Biochem. Biophys. Res. Comm. 81 (4): 1235–1240.. DOI:10.1016/0006-291X(78)91268-8.
- ^ Ridderström M, Mannervik B (1996). "Optimized heterologous expression of the human zinc enzyme glyoxalase I". Biochem. J. 314: 463–467.
- ^ Saint-Jean AP, Phillips KR, Creighton DJ, Stone MJ (1998). "Unknown title". Biochemistry 37 (29): 10345–10353. DOI:10.1021/bi980868q. PMID 9671502.
- ^ Thornalley, P. J. (2003). "Glyoxalase I—structure, function and a critical role in the enzymatic defence against glycation". Biochemical Society Transactions 31 (Pt 6): 1343–1348. DOI:10.1042/BST0311343. PMID 14641060.
- ^ Vander Jagt DL (1989). "Unknown chapter title". In D Dolphin, R Poulson, O Avramovic, editors. Coenzymes and Cofactors VIII: Glutathione Part A. New York: John Wiley and Sons.
- ^ ToxGuideTM for Nickel. U.S. Department of Health and Human Services. Agency for Toxic Substances and Disease Registry
- ^ Kasprzak; Sunderman Jr, F. W.; Salnikow, K. (2003). "Nickel carcinogenesis". Mutation research 533 (1–2): 67–97. DOI:10.1016/j.mrfmmm.2003.08.021. PMID 14643413.
- ^ Dunnick, JK; Elwell, M. R.; Radovsky, A. E.; Benson, J. M.; Hahn, F. F.; Nikula, K. J.; Barr, E. B.; Hobbs, C. H. (1995). "Comparative carcinogenic effects of nickel subsulfide, nickel oxide, or nickel sulfate hexahydrate chronic exposures in the lung". Cancer Research 55 (22): 5251–6. PMID 7585584.
- ^ Stellman, Jeanne Mager (1998). Encyclopaedia of Occupational Health and Safety: Chemical, industries and occupations. International Labour Organization. pp. 133–. ISBN 978-92-2-109816-4. http://books.google.com/books?id=nDhpLa1rl44C&pg=PT133. Retrieved 9 January 2012.
- ^ Barceloux, Donald G.; Barceloux, Donald (1999). "Nickel". Clinical Toxicology 37 (2): 239–258. DOI:10.1081/CLT-100102423. PMID 10382559.
- ^ Thyssen J. P., Linneberg A., Menné T., Johansen J. D. (2007). "The epidemiology of contact allergy in the general population—prevalence and main findings". Contact Dermatitis 57 (5): 287–99. DOI:10.1111/j.1600-0536.2007.01220.x. PMID 17937743.
- ^ Nestle, O.; Speidel, H.; Speidel, M. O. (2002). "High nickel release from 1- and 2-euro coins". Nature 419 (6903): 132. DOI:10.1038/419132a. PMID 12226655.
- ^ "Nickel Named 2008 Contact Allergen of the Year". http://www.nickelallergyinformation.com/2008/06/nickel-named-2008-contact-alle.htm. Retrieved 2009-06-06.
- ^ Salnikow, k.; Donald, S. P.; Bruick, R. K.; Zhitkovich, A.; Phang, J. M.; Kasprzak, K. S. (40337–40344). "Depletion of intracellular ascorbate by the carcinogenic metal nickel and cobalt results in the induction of hypoxic stress". J. Biol. Chem. 279: 132. DOI:10.1074/jbc.M403057200. PMID 15271983.
- ^ Das, K. K.; Das, S. N.; Dhundasi, S. A. (2008). "Nickel, its adverse health effects and oxidative stress" (PDF). Indian J. Med. Res. 128 (4): 117–131. PMID 19106437. http://www.icmr.nic.in/ijmr/2008/october/1005.pdf. Retrieved 22 August 2011.
vep:Nikel' (himine element)