- Order:
- Duration: 2:15
- Published: 05 Feb 2010
- Uploaded: 14 Dec 2010
- Author: CompChemist
- http://wn.com/Molecular_Dynamics_on_Stapled_Peptide__Computational_Drug_Design
- Email this video
- Sms this video
In mathematics, structural stability is a fundamental property of a dynamical system which means that the qualitative behavior of the trajectories is unaffected by C1-small perturbations. Examples of such qualitative properties are numbers of fixed points and periodic orbits (but not their periods). Unlike Lyapunov stability, which considers perturbations of initial conditions for a fixed system, structural stability deals with perturbations of the system itself. Variants of this notion apply to systems of ordinary differential equations, vector fields on smooth manifolds and flows generated by them, and diffeomorphisms.
Structurally stable systems were introduced by Aleksandr Andronov and Lev Pontryagin in 1937 under the name "systèmes grossières", or rough systems. They announced a characterization of rough systems in the plane, the Andronov–Pontryagin criterion. In this case, structurally stable systems are typical, they form an open dense set in the space of all systems endowed with appropriate topology. In higher dimensions, this is no longer true, indicating that typical dynamics can be very complex (cf strange attractor). An important class of structurally stable systems in arbitrary dimensions is given by Anosov diffeomorphisms and flows.
It is important to note that topological equivalence is realized with a loss of smoothness: the map h cannot, in general, be a diffeomorphism. Moreover, although topological equivalence respects the oriented trajectories, unlike topological conjugacy, it is not time-compatible. Thus the relevant notion of topological equivalence is a considerable weakening of the naïve C1 conjugacy of vector fields. Without these restrictions, no continuous time system with fixed points or periodic orbits could have been structurally stable. Weakly structurally stable systems form an open set in X1(G), but it is unknown whether the same property holds in the strong case.
Structural stability of non-singular smooth vector fields on the torus can be investigated using the theory developed by Poincaré and Arnaud Denjoy. Using the Poincaré recurrence map, the question is reduced to determining structural stability of diffeomorphisms of the circle. As a consequence of the Denjoy theorem, an orientation preserving C2 diffeomorphism ƒ of the circle is structurally stable if and only if its rotation number is rational, ρ(ƒ) = p/q, and the periodic trajectories, which all have period q, are non-degenerate: the Jacobian of ƒq at the periodic points is different from 1, cf Circle map.
Dmitri Anosov discovered that hyperbolic automorphisms of the torus, such as the Arnold's cat map, are structurally stable. He then generalized this statement to a wider class of systems, which have since been called Anosov diffeomorphisms and Anosov flows. One celebrated example of Anosov flow is given by the geodesic flow on a surface of constant negative curvature, cf Hadamard billiards.
When Smale started to develop the theory of hyperbolic dynamical systems, he hoped that structurally stable systems would be "typical". This would have been consistent with the situation in low dimensions: dimension two for flows and dimension one for diffeomorphisms. However, he soon found examples of vector fields on higher-dimensional manifolds that cannot be made structurally stable by an arbitrarily small perturbation (such examples have been later constructed on manifolds of dimension three). This means that in higher dimensions, structurally stable systems are not dense. In addition, a structurally stable system may have transversal homoclinic trajectories of hyperbolic saddle closed orbits and infinitely many periodic orbits, even though the phase space is compact. The closest higher-dimensional analogue of structurally stable systems considered by Andronov and Pontryagin is given by the Morse–Smale systems.
Category:Differential equations Category:Dynamical systems Category:Stability theory
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.