In genetics, a mutagen (Latin, literally origin of change) is a physical or chemical agent that changes the genetic material, usually DNA, of an organism and thus increases the frequency of mutations above the natural background level. As many mutations cause cancer, mutagens are therefore also likely to be carcinogens. Not all mutations are caused by mutagens: so-called "spontaneous mutations" occur due to spontaneous hydrolysis, errors in DNA replication, repair and recombination.
The first mutagens to be identified were carcinogens, substances that were shown to be linked to cancer. Tumors were described more than 2,000 years before the discovery of chromosomes and DNA; in 500 B.C., the Greek physician Hippocrates named crab-shaped tumors karkinos (from which the word "cancer" is derived via Latin), meaning crab. In 1567, Swiss physician Paracelsus suggested unidentified substance in mined ore (identified as radon gas in modern times) caused a wasting disease in miners,[1] and in England, in 1761, John Hill made the first direct link of cancer to chemical substances by noting that excessive use of snuff may cause nasal cancer.[2] In 1775, Dr. Percivall Pott wrote a paper on the high incidence of scrotal cancer in chimney sweeps, and suggested chimney soot as the cause of scrotal cancer.[3] In 1915, Yamagawa and Ichikawa showed that repeated application of coal tar to rabbit's ears produced malignant cancer.[4] Subsequently in the 1930s the carcinogen component in coal tar was identified as a polyaromatic hydrocarbon (PAH), benzo(a)pyrene.[5][6] Polyaromatic hydrocarbons are also present in soot, which was suggested to be a causative agent of cancer over 150 years earlier.
The mutagenic property of mutagens was first demonstrated in 1927, when Hermann Muller discovered that x-rays can cause genetic mutations in fruit flies, producing phenotypic mutants as well as observable changes to the chromosomes.[7] His collaborator Edgar Altenburg also demonstrated the mutational effect of UV radiation in 1928.[8] Muller went on to use x-rays to create Drosophila mutants that he used in his studies of genetics.[9] He also found that X-rays not only mutate genes in fruit flies but also have effects on the genetic makeup of humans.[10] Similar work by Lewis Stadler also showed the mutational effect of X-ray on barley in 1928,[11] and ultraviolet (UV) radiation on maize in 1936.[12] The effect of sunlight had previously been noted in the nineteenth century where rural outdoor workers and sailors were found to be more prone to skin cancer.[13]
Chemical mutagens were not demonstrated to cause mutation until the 1940s, when Charlotte Auerbach and J. M. Robson, found that mustard gas can cause mutations in fruit flies.[14] A large number of chemical mutagens have since been identified, especially after the development of the Ames test in 1970s by Bruce Ames that screens for mutagens and allows for preliminary identification of carcinogens.[15][16] Early studies by Ames showed around 90% of known carcinogens can be identified in Ames test as mutagenic (later studies however gave lower figure),[17][18][19] and ~80% of the mutagens identified through Ames test may also be carcinogens.[19][20] Mutagens are not necessarily carcinogens, and vice versa. Sodium Azide for example may be mutagenic (and highly toxic), but it has not been shown to be carcinogenic.[21]
Main article:
Mutagenesis
Mutagen causes changes to the DNA that can affect the transcription and replication of the DNA, which in severe cases can lead to cell death. The mutagen produces mutations in the DNA, and deleterious mutation can result in aberrant, impaired or loss of function for a particular gene, and accumulation of mutations may lead to cancer.
Different mutagens act on the DNA differently. Powerful mutagens may result in chromosomal instability,[22] causing chromosomal breakages and rearrangement of the chromosomes such as translocation, deletion, and inversion. Such mutagens are called clastogens.
Mutagens may also modify the DNA sequence, the changes in nucleic acid sequences by mutations include substitution of nucleotide base-pairs and insertions and deletions of one or more nucleotides in DNA sequences. Although some of these mutations are lethal or can cause serious disease, many have minor effects as they do not result in residue changes that have significant effect on the structure and function of the proteins. Many mutations are silent mutations, causing no visible effects at all, either because they occur in non-coding or non-functional sequences, or they do not change the amino-acid sequence due to the redundancy of codons.
Some mutagens can cause aneuploidy and change the number of chromosomes in the cell.
In Ames test, where the varying concentrations of the chemical are used in the test, the dose response curve obtained is nearly always linear, suggesting that there is no threshold for mutagenesis. Similar results are also obtained in studies with radiations, indicating that there may be no safe threshold for mutagens. However, some proposed that low level of some mutagens may stimulate the DNA repair processes and therefore may not necessarily be harmful.
Mutagens may be of physical, chemical or biological origin. They may act directly on the DNA, causing direct damage to the DNA, and most often result in replication error. Some however may act on the replication mechanism and chromosomal partition. Many mutagens are not mutagenic by themselves, but can form mutagenic metabolites through cellular processes. Such mutagens are called promutagens.
A large number of chemicals may interact directly with DNA. However, many such as PAHs, aromatic amines, benzene are not necessarily mutagenic by themselves, but through metabolic processes in cells they produce mutagenic compounds.
- Reactive oxygen species (ROS) - These may be superoxide, hydroxyl radicals and hydrogen peroxide, and large number of these highly reactive species are generated by normal cellular processes, for example as a by-products of mitochondrial electron transport, or lipid peroxidation. A number of mutagens may also generate these ROS.
- Deaminating agents such as nitrous acid
- Polycyclic aromatic hydrocarbon (PAH)
- Alkylating agents such as ethylnitrosourea. The compounds transfer methyl or ethyl group to bases or the backbone phosphate groups. Guanine when alkylated may be mispaired with thiamine. Some may cause DNA crosslinking and breakages. Nitrosamines are an important group of mutagens found in tobacco, and may also be formed in in smoked meats and fish via the interaction of amines in food with nitrites added as preservatives. Other alkylating agents include mustard gas and vinyl chloride.
- Aromatic amines and amides have been associated with carcinogenesis since 1895 when German physician Ludwig Rehn observed high incidence of bladder cancer among workers in German synthetic aromatic amine dye industry. 2-Acetylaminofluorene, originally used as a pesticide but may also be found in cooked meat, may cause cancer of the bladder, liver, ear, intestine, thyroid and breast.
- Alkaloid from plants, such as those from Vinca species[citation needed], may be converted by metabolic processes into the active mutagen or carcinogen
- Bromine and some compounds that contain bromine in their chemical structure
- Sodium azide, an azide salt that is a common reagent in organic synthesis and a component in many car airbag systems
- Psoralen combined with ultraviolet radiation causes DNA cross-linking and hence chromosome breakage
- Benzene, an industrial solvent and precursor in the production of drugs, plastics, synthetic rubber and dyes.
- Base analog, which can substitute for DNA bases and cause copying errors.
Many metals, such as arsenic, cadmium, chromium, nickel and their compounds may be mutagenic, they may however act via different mechanisms.[23] Arsenic, chromium, iron, and nickel may be associated with the production of reactive oxygen species, and some of these may also alter the fidelity of DNA replication. Nickel may also be linked to DNA hypermethylation and histone deacetylation, while cadmium may inhibit DNA mismatch repair.
- Transposon, a section of DNA that undergoes autonomous fragment relocation/multiplication. Its insertion into chromosomal DNA disrupt functional elements of the genes.
- Virus - Virus DNA may be inserted into the genome and disrupts genetic function.
- Bacteria - some bacteria such as Helicobacter pylori cause inflammation during which oxidative species are produced, causing DNA damage by reducing efficiency of DNA repair systems thereby increasing mutation.
Fruits and vegetable are rich in antioxidants.
Antioxidants are important groups of anticarcinogenic compounds that may help remove ROS or potentially harmful chemicals. These may be found naturally in fruits and vegetables.[24] Example of antioxidants are vitamin A and its carotenoid precursors, vitamin C, vitamin E, polyphenols, and various other compounds. β-Carotene, the red-orange colored compounds found in carrots, tomatoes and other fruits and vegetables have been shown to be effective in cancer prevention. Vitamin C may prevent various cancers by inhibiting the formation of mutagenic N-nitroso compounds (nitrosamine). Flavonoids such as EGCG in in green tea have also been shown to be effective antioxidants and may have anti-cancer properties.
Other chemicals may reduce mutagenesis via other mechanisms, although for some the precise mechanism for their protective property may not be certain. Selenium, which is present as a micronutrient in vegetable, is a component of selenoproteins which are important antioxidant enzymes such as gluthathione peroxidase. Many phytonutrients may counter effect of mutagens, for example, sulforaphane in vegetables such as broccoli has been shown to be protective against prostate cancer.[25] Others that may be effective against cancer include indole-3-carbinol from cruciferous vegetables and resveratrol from red wine.[26]
An effective precautionary measure an individual can undertake to protect themselves is by limiting exposure to mutagens such as UV radiations and tobacco smoke. In Australia where people with pale skin are often exposed to strong sunlight, melanoma is the most common cancer diagnosed in people aged 15-44 years.[27][28] In 1981, human epidemiological analysis by Richard Doll and Richard Peto indicated that smoking caused 30% of cancers in the US.[29] Doll and Peto also estimated that diet may cause perhaps around 35% of cancers. Mutagens identified in food include mycotoxins from food contaminated with fungal growths, such as aflatoxins which may be present in contaminated peanuts (prevalent in Southern China) and corn, heterocyclic amines generated in meat when cooked at high temperature, PAHs in charred meat and smoked fish, as well as in oils, fats, bread, and cereal,[30] and nitrosamines generated from nitrites used as food preservatives in cured meat such as bacon (ascobate, which is added to cured meat, however, reduces nitrosamine formation).[24] Excessive alcohol consumption has also been linked to carcinogenesis, the possible mechanisms for its carcinogenicity include formation of acetaldehyde which may be mutagenic, and the induction of cytochrome P450 system which is known to produce mutagenic compounds from promutagens.[31]
For certain mutagens, such as dangerous chemicals and radiations, as well as infectious agents known to cause cancer, government legislations and regulatory bodies are necessary for their control
Many different systems for detecting mutagen have been developed.[32][33] Animal systems may more accurately reflect the metabolism of human, however, they are expensive and time-consuming (may take around three years to complete), they are therefore not used as a first screen for mutagenicity or carcinogenicity.
- Ames test - This is the most commonly used test using Salmonella typhimurium strains deficient in histidine biosynthesis. The test checks for mutants that can be reverted back to wild-type. It is an easy, inexpensive and convenient initial screen for mutagens.
- Resistance to 8-azaguanine in S. typhimurium - Similar to Ames test, but instead of reverse mutation, it checks for forward mutation that confer resistance to 8-azaguanine in a histidine revertant strain.
- Escherichia coli systems - Both forward and reverse mutation detection system have been modified for use in E. coli. Tryptophan-deficient mutant is used for the reverse mutation, while galactose utility or resistance to 5-methyltryptophan may be used for forward mutation.
- DNA repair - E. coli and Bacillus subtilis strains deficient in DNA repair may be used to detect mutagens by their effect on the growth of these cells through DNA damage.
Systems similar to Ames test have been developed in yeast. Saccharomyces cerevisiae is general used. These systems can check for forward and reverse mutations, as well as recombinant events.
[edit] Drosophila
Sex-Linked Recessive Lethal Test - Males from a strain with yellow bodies are used in this test. The gene for the yellow body lies on the X-chromosome. The fruit flies are fed on a diet of test chemical, and progenies are separated by sex. The surviving males are crossed with the females of the same generation, and if no males with yellow bodies are detected in the second generation, it would indicate a lethal mutation on the X-chromosome has occurred.
Plants such as Zea maize, Arabidopsis and Tradescantia have been used in various test assays for mutagenecity of chemicals.
Mammalian cell lines such as Chinese hamster V79 cells, Chinese hampter ovary (CHO) cells or mouse lymphoma cells may be used to test for mutagenesis. Such systems include the HPRT assay for resistance to 8-azaguanine or 6-thioguanine, and ouabain-resistance (OUA) assay.
Rat primary hepatocytes may also be used to measure DNA repair following DNA damage. Mutagens may stimulate unscheduled DNA synthesis that results in more stained nuclear material in cells following exposure to mutagens.
These systems check for large scale changes to the chromosomes and may be used with cell culture or in animal test. The chromosomes are stained and observed for any changes. Sister chromatid exchange is a symmetrical exchange of chromosome material between sister chromatids and may be correlated to the mutagenic or carcinogenic potential of a chemical. In micronucleus Test, cells are examined for micronuclei, which are fragments or chromosomes left behind at anaphase, and is therefore a test for clastogenic agents that cause chromosome breakages. Other tests may check for various chromosomal aberrations such as chromatid and chromosomal gaps and deletions, translocations, and ploidy.
Rodents are usually used in animal test. The chemicals under test are usually administered in the food and in the drinking water, but sometimes by dermal application, by gavage, or by inhalation, and carried out over the major part of the life span for rodents. In tests that check for carcinogens, maximum tolerated dosage is first determined, then a range of doses are given to around 50 animals throughout the notional lifespan of the animal of two years. After death the animals are examined for sign of tumours. Differences in metabolism between rat and human however means that human may not respond in exactly the same way to mutagen, and dosages that produce tumors on the animal test may also be unreasonably high for a human, i.e. the equivalent amount required to produce tumors in human may far exceed what a person might encounter in real life.
Mice with recessive mutations for a visible phenotype may also be used to check for mutagens. Females with recessive mutation crossed with wild-type males would yield the same phenotype as the wild-type, and any observable change to the phenotype would indicate that a mutation induced by the mutagen has occurred.
Mice may also be used for dominant lethal assays where early embryonic deaths are monitored. Male mice are treated with chemicals under test, mated with females, and the females are then sacrificed before parturition and early fetal deaths are counted in the uterine horns.
Transgenic Mouse Assay using a mouse strain infected with a viral shuttle vector is another method for testing mutagens. Animals are first treated with suspected mutagen, the mouse DNA is then isolated and the phage segment recovered and used to infect E. coli. Using similar method as the blue-white screen, the plaque formed with DNA containing mutation are white, while those without are blue.
Many mutagens are highly toxic to proliferating cells, and they are often used to destroy cancer cells. Alkylating agents such as cyclophosphamide and cisplatin, as well as intercalating agent such as daunorubicin and doxorubicin may be used in chemotherapy. Ionizing radiations are used in radiation therapy.
In science fiction, mutagens are often represented as substances that are capable of completely changing the form of the recipient. This is seen in the Teenage Mutant Ninja Turtle franchise, comic books such as Marvel Comics's Inhumans, television series, computer and video games, like the The Witcher, Metroid Prime Trilogy, Resistance: Fall of Man, Resident Evil, Infamous, Command & Conquer,Gears of war 3, and Fallout
- ^ Nature and Nurture - Lessons from Chemical Carcinogenesis: Chemical Carcinogens — From Past to Present
- ^ Hill, J. Cautions Against the Immoderate Use of Snuff. Founded on the Known Qualities of the Tobacco Plant; And the Effects it Must Produce when this Way Taken into the Body: And Enforced by Instances of Persons who have Perished Miserably of Diseases, Occasioned, or Rendered Incurable by its Use (R. Baldwin and J. Jackso, London, 1761).
- ^ Brown, J. R.; Thornton, J. L. (1957). "Percivall Pott (1714-1788) and Chimney Sweepers' Cancer of the Scrotum". British journal of industrial medicine 14 (1): 68–70. PMC 1037746. PMID 13396156. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1037746. edit
- ^ Yamagawa K, Ichikawa K (1915). "Experimentelle Studie ueber die Pathogenese der Epithel geschwuelste". Mitteilungen aus der medizinischen Fakultät der Kaiserlichen Universität zu Tokyo 15: 295–344.
- ^ Cook, J. W., Hewett, C. L. & Hieger, I. (1933). "The isolation of a cancer-producing hydrocarbon from coal tar". Journal of Chemical Society 24: 395-405. DOI:10.1039/JR9330000395. http://pubs.rsc.org/en/content/articlelanding/1933/jr/jr9330000395.
- ^ Nature and Nurture - Lessons from Chemical Carcinogenesis: Chemical Carcinogens — From Past to Present
- ^ Muller, H. J. (1927). "Artificial Transmutation of the Gene". Science 66 (1699): 84–87. DOI:10.1126/science.66.1699.84. PMID 17802387. http://www.esp.org/foundations/genetics/classical/holdings/m/hjm-1927a.pdf. edit
- ^ The limit of radiation frequency effective in producing mutations Altenburg, E. (1928) The American Naturalist, 62, 540-545.
- ^ Crow, J. F.; Abrahamson, S. (1997). "Seventy Years Ago: Mutation Becomes Experimental". Genetics 147 (4): 1491–1496. PMC 1208325. PMID 9409815. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1208325. edit
- ^ Campbell, Neil A. and Jane B. Reece. (2005). Biology (7th ed.). Pearson Education, Inc,. ISBN 080537146X.
- ^ Stadler, L. J. (1928). "Mutations in Barley Induced by X-Rays and Radium". Science 68 (1756): 186–187. DOI:10.1126/science.68.1756.186. PMID 17774921. edit
- ^ Stadler, L. J.; G. F. Sprague (1936-10-15). "Genetic Effects of Ultra-Violet Radiation in Maize. I. Unfiltered Radiation". Proceedings of the National Academy of Sciences of the United States of America (US Department of Agriculture and Missouri Agricultural Experiment Station) 22 (10): 572–578. DOI:10.1073/pnas.22.10.572. PMC 1076819. PMID 16588111. http://www.pnas.org/cgi/reprint/22/10/579.pdf. Retrieved 2007-10-11.
- ^ Hockberger, P. E. (2002). "A history of ultraviolet photobiology for humans, animals and microorganisms". Photochem. Photobiol. 76 (6): 561–579. DOI:10.1562/0031-8655(2002)0760561AHOUPF2.0.CO2. PMID 12511035. http://www.photobiology.info/Hockberger.html.
- ^ Charlotte Auerbach, J. M. Robson, & J. G. Carr (Mar 1947). "Chemical Production of Mutations". Science 105: 243-247. http://www.sciencemag.org/cgi/content/refs/105/2723/243.
- ^ Ames, B. N.; Lee, F. D.; Durston, W. E. (1973). "An Improved Bacterial Test System for the Detection and Classification of Mutagens and Carcinogens". Proceedings of the National Academy of Sciences of the United States of America 70 (3): 782–786. DOI:10.1073/pnas.70.3.782. PMC 433358. PMID 4577135. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=433358. edit
- ^ Ames, B. N. (1979). "Identifying environmental chemicals causing mutations and cancer". Science 204 (4393): 587–593. DOI:10.1126/science.373122. PMID 373122. http://www.sciencemag.org/content/204/4393/587.long. edit
- ^ McCann, J.; Choi, E.; Yamasaki, E.; Ames, B. N. (1975). "Detection of carcinogens as mutagens in the Salmonella/microsome test: Assay of 300 chemicals". Proceedings of the National Academy of Sciences of the United States of America 72 (12): 5135–5139. DOI:10.1073/pnas.72.12.5135. PMC 388891. PMID 1061098. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=388891. edit
- ^ McCann J, Gold LS, Horn L, McGill R, Graedel TE, Kaldor J (1988). "Statistical analysis of Salmonella test data and comparison to results of animal cancer tests". Mutation Research 205 (1-4). PMID 3285186. http://potency.lbl.gov/pdfs/MutatRes88.pdf.
- ^ a b Dunkel VC, Zeiger E, Brusick D, McCoy E, McGregor D, Mortelmans K, Rosenkranz HS, Simmon VF (1985). Reproducibility of microbial mutagenicity assays: II. Testing of carcinogens and noncarcinogens in Salmonella typhimurium and Escherichia coli. 7. pp. 1-248.. PMID 3905369.
- ^ Romualdo Benigni and Cecilia Bossa (2011). "Alternative strategies for carcinogenicity assessment: an efficient and simplified approach based on in vitro mutagenicity and cell transformation assays". Mutagenesis 26 (3): 455–460. PMID 21398403. http://mutage.oxfordjournals.org/content/26/3/455.full.pdf.
- ^ Toxicology And Carcinogenesis Studies Of Sodium Azide
- ^ Huang, L.; Snyder, A. R.; Morgan, W. F. (2003). "Radiation-induced genomic instability and its implications for radiation carcinogenesis". Oncogene 22 (37): 5848–5854. DOI:10.1038/sj.onc.1206697. PMID 12947391. edit
- ^ Valko, M.; Morris, H.; Cronin, M. T. (2005). "Metals, toxicity and oxidative stress". Current medicinal chemistry 12 (10): 1161–1208. DOI:10.2174/0929867053764635. PMID 15892631. http://www.glutathioneexperts.com/pdfs/glutathione-heavy-metal-1.pdf. edit
- ^ a b Carcinogens and Anticarcinogens in the Human Diet. National Academy Press. 1996. ISBN 0-309-05391-9.
- ^ Gibbs A, Schwartzman J, Deng V, Alumkal J (2009). "Sulforaphane destabilizes the androgen receptor in prostate cancer cells by inactivating histone deacetylase 6". Proc Natl Acad Sci U S A. 106 (39): 16663-8. PMC 2757849. PMID 19805354. //www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2757849.
- ^ Gullett NP, Ruhul Amin AR, Bayraktar S, Pezzuto JM, Shin DM, Khuri FR, Aggarwal BB, Surh YJ, Kucuk O (2010). "Cancer prevention with natural compounds". Seminars in Oncology 37 (3): 258-81. PMID 20709209.
- ^ "Skin Cancer Facts and Figures". http://www.cancer.org.au/cancersmartlifestyle/SunSmart/Skincancerfactsandfigures.htm. Retrieved 2010-07-02.
- ^ Skin-tone gene could predict cancer risk
- ^ Doll, R.; Peto, R. (1981). "The causes of cancer: Quantitative estimates of avoidable risks of cancer in the United States today". Journal of the National Cancer Institute 66 (6): 1191–1308. PMID 7017215. edit
- ^ Scientific Committee on Food (4 December 2002). "Polycyclic Aromatic Hydrocarbons - Occurrence in foods, dietary exposure and health effects". European Commission. http://ec.europa.eu/food/fs/sc/scf/out154_en.pdf. Retrieved 21 August 2010.
- ^ Pöschl G, Seitz HK (2004). "Alcohol and cancer". Alcohol and Alcoholism 39 (3): 155–65. DOI:10.1093/alcalc/agh057. PMID 15082451.
- ^ Hodgson, Ernest (2004). "Chapter 21". A Textbook of Modern Toxicology (3rd ed.). John Wiley & Sons. ISBN 0-471-26508-X.
- ^ Williams, Phillip L.; James, Robert C.; Roberts, Stephen M. (2000). Principles of Toxicology - Environmental and Industrial Applications (2nd ed.). John Wiley & Sons. ISBN 0-471-29321-0.
|
|
|
|
Fields |
|
|
Concepts |
|
|
Treatments |
|
|
Incidents |
|
|
Related topics |
|
|
|
|