
Extracting PROV provenance traces from Wikipedia history
pages

Paolo Missier
School of Computing Science

Newcastle University, UK
Paolo.Missier@ncl.ac.uk

Ziyu Chen
School of Computing Science

Newcastle University, UK
z.chen3@newcastle.ac.uk

ABSTRACT
Wikipedia History pages contain provenance metadata that
describes the history of revisions of each Wikipedia article.
We have developed a simple extractor which, starting from
a user-specified article page, crawls through the graph of its
associated history pages, and encodes the essential elements
of those pages according to the PROV data model.1 The
crawling is performed on the live pages using the Wikipedia
REST interface. The resulting PROV provenance graphs
are stored in a graph database (Neo4J), where they can be
queried using the Cypher graph query language (proprietary
to Neo4J), or traversed programmatically using the Neo4J
Java Traversal API.

Categories and Subject Descriptors
E [Data]: General; H.2.3 [Database Management]: Lan-
guages—Data description languages

General Terms
Design

1. INTRODUCTION
This short paper describes provenance traces that contain

“history”metadata for selected Wikipedia pages. The traces
are encoded using the PROV provenance model from the
W3C,2 and are available as Neo4J data files3 through the
ProvBench repository4. In the rest of this report we present
the structure and content of a Wikipedia PROV provenance
graph, describe the crawling model and the capabilities of
the tool used for the extraction, and show the general query

1http://www.w3.org/TR/prov-dm/
2http://www.w3.org/TR/prov-dm/
3The community edition of the Neo4J graph database is
available at neo4j.org.
4The Wikipedia area of the ProvBench repository is avail-
able at: https://github.com/provbench/Wikipedia-PROV

Copyright is held by the author/owner(s).
EDBT/ICDT ’13 March 18 - 22 2013, Genoa, Italy
Copyright 2013 ACM 978-1-4503-1599-9/13/03 ...$15.00.

style of the Cypher graph query language, by presenting
typical queries on the traces.

2. ENCODING WIKIPEDIA HISTORY US-
ING PROV

Wikipedia revision history pages describe the timeline of
changes that occurred to an underlying page. The main revi-
sion history page (Fig.1) consists of a time series of records,
containing much of the same information found in any ver-
sion control system: the date of the edit and the user re-
sponsible for it along with notes and links to the pages be-
fore/after the edit, and a content diff page. Additional useful
information includes the size of the page before and after the
edit, and the size of the modified text.

The revision history itself can be captured very simply by
creating a sequence of revision relations, between pairs of
subsequent versions of an article. In PROV, this is achieved
using the built-in wasDerivedFrom relation together with a
type qualifier, namely prov:type= ’prov:revision’. Thus,
the basic PROV pattern for revision, expressed here using
the PROV-N notation5, is the following:

entity(oldVersion,
[prov:type=’article’, pageid=’X’,

revid=’old’ , title=’Y’])
entity(newVersion,

[prov:type=’article’ , pageid=’X’,
revid=’new’, title=’Y’])

wasDerivedFrom(newVersion, oldVersion,
[prov:type=’prov:Revision’])

where the two entities that represent the old and new
version share the same pageid and title, and have different
revision ids.

The complete pattern also includes the editing activity, as
well as the agent who was responsible for the editing. Using
PROV-N, this is expressed as follows:

agent(aEditingAgent,
[prov:type=’editor’, username=’...’, id =’...’])

activity (aEditing, startTime, endTime,
[prov:type=’edit’])

wasAssociatewdWith(aEditing, aEditingAgent,
[comment=’commentId’])

used(aEditing, oldVersion, time)
wasGeneratedBy(newVersion, aEditing, time)

We have implemented a simple crawler to harvest wikipedia
history pages and encode them using PROV. The crawler’s

5http://www.w3.org/TR/prov-n/

Figure 1: Screenshot of a Wikipedia revision history page

exploration can be controlled using several parameters. Start-
ing from a user-specified Wikipedia topic, for instance“New-
castle Upon Tyne”6, the crawler begins by following its re-
vision history back to a user-specified max number of revi-
sions. An example of how the basic pattern described above
unfolds appears in the graph of Fig. 2 (the label wasRevi-
sionOf is used here as shorthand for the qualified derivation
shown above. Also, the ids for the specific edit activities
are not shown). One can see that three editors were respon-
sible for the history fragment portrayed in the graph. At
this point, the crawler may explore the user dimension of
the revision graph, by visiting the pages associated to each
of those editors, where the history of the edits made by the
user on articles are found. From there, the crawler may
then follow one of the articles and once again trace the arti-
cle’s revisions. By repeatedly switching between the article
space and the user space, the crawler progressively uncovers
a connected component of the Wikipedia provenance graph.
The process results in very large graphs that exhibit a reg-
ular structure. A small fragment with the entire pattern is
shown in Fig. 3.

This graph portrays two agents. The one on the left has
been involved in the Newcastle article as well as in at least
one other article, while the one on the right is known to have
carried out 19 other revisions (collapsed in one circle node
in the figure). Note that these articles may be completely
unrelated, and thus there is no expectation that the crawler

6The article itself is recommended reading, as the city’s his-
tory dates back from the late Roman empire and was once
one of the end points of Hadrian’s wall.

will actually stay focused on related topics. In many cases,
these agents can be recognized as being one of the many bots
that continuously crawl Wikipedia trying to fix formatting
problems, to revert vandalised pages, or, as in this case, dis-
ambiguating the names of people who appear in the articles.
The crawler filters out bot activities that it detects using a
combination of regular expressions applied to user comments
(which sometimes clarify that those are bot-made edits), as
well as a user-provided list of bot usernames. This is the only
attempt that the crawler makes at staying within a topical
area of Wikipedia, however. Full-fledged focused crawling
of provenance is beyond the scope of this implementation.

Three parameters are used to control the extent of the
user/article spaced visited by the crawler. Firstly, the revi-
sion length determines the max. number of wasRevisionOf
relations traversed, towards the past, from a landing revi-
sion page. Secondly, the max users parameter determines
the max number of wasAssociatedWith relations, i.e., the
max number of contributions explored per user. Thirdly,
the depth parameter determines how many times the switch-
over between article space and user space may occur. For
example, setting depth = 3 results in the exploration of re-
visions for articles that are connected to the original seed
article through at most 2 intermediate users: base article→
user1 → article2 → user2 → article3.

3. STORAGE AND QUERYING OF PROV
GRAPHS

As mentioned, the crawler stores the PROV traces in a

Figure 2: Basic graph pattern for a revision history

Figure 3: Exploring the article space and the user space

Neo4J graph database7. The Neo4J DBMS comes with
a proprietary graph query language, called Cypher, and a
Java Traversal API (Cypher queries can be embedded within
Java, as well. Third party graph traversal languages such
as Gremlin8 are also supported). This facilitates the imple-
mentation of several types of graph analysis, including for
instance discovering connections amongst users (by cluster-
ing them according to the sets of pages they co-edit), mea-
suring the heterogeneity of their interests and the stability
of pages over time, the frequency of acts of vandalism over
certain pages, and so forth. While the crawler incorporates
some of these functions, those are more generally best sup-
ported by means of external applications over the PROV
database.

The following sample Cypher queries demonstrate the style
of declarative specification of graph traversal, as well as the

7Details on how to obtain and install a free license of Neo4J
community edition are provided in separate documentation
provided with the traces themselves.
8https://github.com/tinkerpop/gremlin/wiki

potential of this DBMS for provenance analysis. The first
query is designed to traverse revision histories, i.e., paths
consisting entirely of wasRevisionOf relations (up to 100),
starting from the home node, and counting the number of
revisions along the way:

START n=node(1)
MATCH revisionChain=n−[r?:wasRevisionOf∗1..100]−>n2
RETURN n2.title, n2.time?, n2.revid, length(revisionChain), r
ORDER BY n2.revid

The query returns a table, listing the names of the revision
nodes, optionally the time, the revision ID and the length of
the revision chain from the start node (1). The structure of
a query generally includes a starting point (START clause),
consisting of a selection of nodes (either selected by node id,
as in this example, or by index lookup), followed by graph
patterns that include a combination of nodes and relation-
hip types (MATCH clause), and a RETURN clause that is
roughly equivalent to a SQL SELECT statement.

The next query lists all articles edited by each agent, by
finding all graph patterns where an article is connected to

PROV Terms Covered?
prov:Activity Yes
prov:Agent Yes
prov:Entity Yes
prov:actedOnBehalfOf No
prov:endedAtTime No
prov:startedAtTime No
prov:used Yes
prov:wasAssociatedWith Yes
prov:wasAttributedTo No
prov:wasDerivedFrom No
prov:wasGeneratedBy Yes
prov:wasInformedBy No

Table 1: PROV terms coverage table

an agent node by way of one editing activity:

START agentNode=node(∗)
MATCH article −[:wasGeneratedBy] −>

edit −[:wasAssociatedWith]−>agentNode
return distinct article . title , agentNode.user name
order by agentNode.user name

The result include for instance the following pairs:

JohnBlackburne The Fabulous Thunderbirds
JohnBlackburne Distance from a point to a line
JohnBlackburne Macau
...
Rjensen Newcastle upon Tyne
Rjensen Harlan F. Stone
Rjensen John Marshall Harlan II
Rjensen Thomas Johnson (jurist)

Finally, the next query, a variation of the previous, illus-
trates the aggregation capabilities of Cypher, by counting
the number of revisions for each agent and for each page
title:

START agentNode=node(∗)
MATCH article −[:wasGeneratedBy] −>

edit −[:wasAssociatedWith]−>agentNode
return article . title , agentNode.user name, count(edit)
order by agentNode.user name

4. CONCLUSIONS
We have presented a simple crawler for Wikipedia history

pages, which produces PROV-compliant provenance graphs
and stores them into a Neo4J database. Some sample traces
in the form of Neo4J data files have been contributed to
the ProvBench traces repository9. The crawler is at prelim-
inary stages of development, however the code is available
for download10. Table 1 shows which PROV terms appear
in the wikipedia graphs.

9https://github.com/provbench/Wikipedia-PROV
10https://github.com/PaoloMissier/
wikipedia-provenance

