Although Ronald Fisher had very poor eyesight he was a precocious student, winning the Neeld Medal (a competitive essay in Mathematics) at Harrow School at the age of 16. Because of his poor eyesight, he was tutored in mathematics without the aid of paper and pen, which developed his ability to visualize problems in geometrical terms, without contributing to his interest in writing proper derivations of mathematical solutions, especially proofs. He amazed his peers with his ability to conjecture mathematical solutions without justifying his conclusions by showing intermediate steps. He also developed a strong interest in biology, and, especially, evolution.
In 1909 he won a scholarship to Gonville and Caius College, Cambridge. There he formed many friendships and became enthralled with the heady intellectual atmosphere. At Cambridge, Fisher learned of the newly rediscovered theory of Mendelian genetics; he saw biometry—and its growing corpus of statistical methods—as a potential way to reconcile the discontinuous nature of Mendelian inheritance with continuous variation and gradual evolution. However, his foremost concern was eugenics, which he saw as a pressing social as well as scientific issue that encompassed both genetics and statistics. In 1911 he was involved in forming the Cambridge University Eugenics Society with John Maynard Keynes, R.C. Punnett and Horace Darwin (Charles Darwin's son). The group was active, and held monthly meetings, often featuring addresses by leaders of mainstream eugenics organizations, such as the Eugenics Education Society of London, founded by Charles Darwin's half-cousin, Francis Galton in 1909. Near Fisher's graduation in 1912, Fisher's tutor informed his student that, despite his enormous aptitude for scientific work and his mathematical potential, that his disinclination to show calculations or to prove propositions unfortunately rendered him unsuited for a career in applied mathematics, which required greater fortitude: His tutor gave him a "luke-warm" recommendation, stating that if Fisher "had stuck to the ropes he would have made a first class mathematician, but he would not."
After his graduation, Fisher was eager to join the army in anticipation of Great Britain's entry into World War I; however, he failed the medical examinations (repeatedly) because of his eyesight. Over the next six years, he worked as a statistician for the City of London. For his war work, he took up teaching physics and mathematics at a series of public schools, including Bradfield College in Berkshire, as well as aboard H.M. Training Ship ''Worcester''. Major Leonard Darwin (another of Charles Darwin's sons) and an unconventional and vivacious friend he called Gudruna were almost his only contacts with his Cambridge circle. They sustained him through this difficult period. A bright spot in his life was that Gudruna matched him to her sister Eileen Guinness; they married in 1917 when she was only 17. With the sisters' help, he set up a subsistence farming operation on the Bradfield estate, where they had a large garden and raised animals, learning to make do on very little. They lived through the war without using their food coupons.
During this period, Fisher started writing book reviews for the ''Eugenic Review'' and gradually increased his interest in genetic and statistical work. He volunteered to undertake all such reviews for the journal, and was hired to a part-time position by Major Darwin. He published several articles on biometry during this period, including the ground-breaking "The Correlation Between Relatives on the Supposition of Mendelian Inheritance", written in 1916 and published in 1918. This paper laid foundation for what came to be known as biometrical genetics, and introduced the methodology of the analysis of variance, which was a considerable advance over the correlation methods used previously. The paper showed that the inheritance of traits measurable by real values (i.e., continuous or dimensional traits), is consistent with Mendelian principles. This forms the basis of the genetics of complex trait inheritance and mitigated debates between biometricians and Mendelians, and the compatibility of particulate inheritance with natural selection
With the end of the war he went looking for a new job in dejection, calling himself "an egregious failure in two professions" as a commercial statistician and as a teacher. He was offered a position at the Galton Laboratory led by Karl Pearson, the founder of mathematical statistics in the United Kingdom. Because he saw the developing rivalry with Pearson as a professional obstacle, however, he accepted instead a temporary job as a statistician with a small agricultural station in the country in 1919.
Ronald A. Fisher was "interested in application and in the popularization of statistical methods and his early book ''Statistical Methods for Research Workers'', published in 1925, went through many editions and motivated and influenced the practical use of statistics in many fields of study. His ''Design of Experiments'' (1935) [promoted] statistical technique and application. In that book he emphasized examples and how to design experiments systematically from a statistical point of view. The mathematical justification of the methods described was not stressed and, indeed, proofs were often barely sketched or omitted altogether ..., a fact which led H. B. Mann to fill the gaps with a rigorous mathematical treatment in his well known treatise, ."
In addition to "analysis of variance", Fisher named and promoted the method of maximum likelihood estimation. Fisher also originated the concepts of sufficiency, ancillarity, Fisher's linear discriminator and Fisher information. His 1924 article "On a distribution yielding the error functions of several well known statistics" presented Karl Pearson's chi-squared and Student's t in the same framework as the Gaussian distribution, and his own "analysis of variance" distribution z (more commonly used today in the form of the F distribution). These contributions made him a major figure in 20th century statistics.
In defending the use of the ''z'' distribution when the data were not Gaussian, Fisher used a "randomization test" for data from randomized experiments. Randomization had previously been used by Charles Sanders Peirce. According to biographers Yates and Mather, "Fisher introduced the randomization test, comparing the value of t or z actually obtained with the distribution of the t or z values when all possible random arrangements were imposed on the experimental data;" in the randomization test, the random arrangements considered were those arising from the design specified in the treatment protocol. When similar tests are used on data from non-randomized studies, the tests are called permutation tests of significance. Fisher wrote that permutation tests were "in no sense put forward to supersede the common and expeditious tests based on the Gaussian theory of errors."
His work on the theory of population genetics also made him one of the three great figures of that field, together with Sewall Wright and J.B.S. Haldane, and as such was one of the founders of the neo-Darwinian modern evolutionary synthesis. In addition to founding modern quantitative genetics with his 1918 paper, he was the first to use diffusion equations to attempt to calculate the distribution of gene frequencies among populations. He pioneered the estimation of genetic linkage and gene frequencies by maximum likelihood methods, and wrote early papers on the wave of advance of advantageous genes and on clines of gene frequency. His 1950 paper on gene frequency clines is notable as the first application of a computer, the EDSAC, to biology.
Fisher had a long and successful collaboration with E.B. Ford in the field of ecological genetics. The outcome of this work was the general recognition that the force of natural selection was often much stronger than had been appreciated before, and that many ecogenetic situations (such as polymorphism) were not selectively neutral, they were maintained by the force of selection. Fisher was the original author of the idea of heterozygote advantage, which was later found to play a frequent role in genetic polymorphism. The discovery of indisputable cases of natural selection in nature was one of the main strands in the modern evolutionary synthesis.
Fisher introduced the concept of Fisher information in 1925. Fisher information has been the subject of renewed interest in the last few years, due to B. Roy Frieden's book ''Physics from Fisher Information'', which attempts to derive the laws of physics from a Fisherian starting point.
===Fisher's ''Genetical Theory of Natural Selection''=== Fisher was an ardent promoter of eugenics, which also stimulated and guided much of his work in the genetics of humans. His book ''The Genetical Theory of Natural Selection'' was started in 1928 and published in 1930. It contained a summary of what was already known to the literature. He developed ideas on sexual selection, mimicry and the evolution of dominance. He famously showed that the probability of a mutation increasing the fitness of an organism decreases proportionately with the magnitude of the mutation. He also proved that larger populations carry more variation so that they have a larger chance of survival. He set forth the foundations of what was to become known as population genetics.
About a third of the book concerned the applications of these ideas to humans, and presented the data available at that time. He presented a theory that attributed the decline and fall of civilizations to its arrival at a state where the fertility of the upper classes is forced down. Using the census data of 1911 for Britain, he showed that there was an inverse relationship between fertility and social class. This was partly due, he believed, to the rise in social status of families who were not capable of producing many children but who rose because of the financial advantage of having a small number of children. Therefore he proposed the abolition of the economic advantage of small families by instituting subsidies (he called them allowances) to families with larger numbers of children, with the allowances proportional to the earnings of the father. He himself had two sons and six daughters. According to Yates and Mather, "His large family, in particular, reared in conditions of great financial stringency, was a personal expression of his genetic and evolutionary convictions."
The book was reviewed, among others, by physicist Charles Galton Darwin, a grandson of Charles Darwin's, and following publication of his review, C.G. Darwin sent Fisher his copy of the book, with notes in the margin. The marginal notes became the food for a correspondence running at least three years. Fisher's book The Genetical Theory of Natural Selection also had a major influence on the evolutionary biologist W. D. Hamilton and the development of his later theories on the genetic basis for the existence of kin selection.
Between 1929 and 1934 the Eugenics Society also campaigned hard for a law permitting sterilization on eugenic grounds. They believed that it should be entirely voluntary, and a right, not a punishment. They published a draft of a proposed bill, and it was submitted to Parliament. Although it was defeated by a 2:1 ratio, this was viewed as progress, and the campaign continued. Fisher played a major role in this movement, and served in several official committees to promote it.
In 1934, Fisher moved to increase the power of scientists within the Eugenics Society, but was ultimately thwarted by members with an environmentalist point of view, and he, along with many other scientists, resigned.
As an adult, Fisher was noted for his loyalty to his friends. Once he had formed a favourable opinion of any man, he was loyal to a fault. A similar sense of loyalty bound him to his culture. He was a patriot, a member of the Church of England, politically conservative, and a scientific rationalist. Much sought after as a brilliant conversationalist and dinner companion, he very early on developed a reputation for carelessness in his dress and, sometimes, his manners. In later years he was the archetype of the absent-minded professor.
He knew the scriptures well and H. Allen Orr describes him as "deeply devout Anglican who, between founding modern statistics and population genetics, penned articles for church magazines" in the Boston Review. But he was not dogmatic in his religious beliefs. In a 1955 broadcast on Science and Christianity, he said, "The custom of making abstract dogmatic assertions is not, certainly, derived from the teaching of Jesus, but has been a widespread weakness among religious teachers in subsequent centuries. I do not think that the word for the Christian virtue of faith should be prostituted to mean the credulous acceptance of all such piously intended assertions. Much self-deception in the young believer is needed to convince himself that he knows that of which in reality he knows himself to be ignorant. That surely is hypocrisy, against which we have been most conspicuously warned."
: where ''P''0 = initial population, ''r'' = growth rate, ''t'' = time.
He received the recognition of his peers in 1929 when he was inducted into the Royal Society. His fame grew and he began to travel more and lecture to wider circles. In 1931 he spent six weeks at the Statistical Laboratory at Iowa State College in Ames, Iowa. He gave three lectures a week on his work, and met many of the active American statisticians, including George W. Snedecor. He returned again for another visit in 1936.
In 1933 he left Rothamsted to become a Professor of Eugenics at University College London. In 1937 he visited the Indian Statistical Institute (in Calcutta), which at the time consisted of one part-time employee, Professor P. C. Mahalanobis. He revisited there often in later years, encouraging its development. He was the guest of honour at its 25th anniversary in 1957 when it had grown to 2000 employees . In 1939, when World War II broke out, the University tried to dissolve the eugenics department, and ordered all of the animals destroyed. Fisher fought back, but he was then exiled back to Rothamsted with a much reduced staff and resources. He was unable to find any suitable war work, and though he kept very busy with various small projects, he became discouraged of any real progress. His marriage disintegrated. His oldest son, George, an aeroplane pilot, was killed in the war.
In 1943 he was offered the Balfour Chair of Genetics at Cambridge University, his alma mater. During the war, this department was almost entirely destroyed, but the University promised him that he would be charged with rebuilding it after the war. He accepted the offer, but the promises were largely unfilled, and the department grew very slowly. A notable exception was the recruitment in 1948 of the Italian researcher Cavalli-Sforza, who established a one man unit of bacterial genetics. He continued his work on mouse chromosome mapping and other projects. They culminated in the publication in 1949 of ''The Theory of Inbreeding.'' In 1947 he co-founded with Cyril Darlington the journal ''Heredity: An International Journal of Genetics''.
Ronald Fisher was opposed to the UNESCO Statement of Race. He believed that evidence and everyday experience showed that human groups differ profoundly “in their innate capacity for intellectual and emotional development” and concluded that the “practical international problem is that of learning to share the resources of this planet amicably with persons of materially different nature,” and that “this problem is being obscured by entirely well-intentioned efforts to minimize the real differences that exist.” The revised 1951 statement titled "The Race Concept: Results of an Inquiry" was accompanied by Fisher's dissenting commentary.
He eventually received many awards for his work and was dubbed a Knight Bachelor by Queen Elizabeth II in 1952.
Fisher was opposed to the conclusions of Richard Doll and A.B. Hill that smoking caused lung cancer. He compared the correlations in their papers to a correlation between the import of apples and the rise of divorce in order to show that correlation does not imply causation.
To quote Yates and Mather again, "It has been suggested that the fact that Fisher was employed as consultant by the tobacco firms in this controversy casts doubt on the value of his arguments. This is to misjudge the man. He was not above accepting financial reward for his labours, but the reason for his interest was undoubtedly his dislike and mistrust of puritanical tendencies of all kinds; and perhaps also the personal solace he had always found in tobacco."
After retiring from Cambridge University in 1957 he spent some time as a senior research fellow at the CSIRO in Adelaide, Australia. He died of colon cancer there in 1962.
He was awarded the Linnean Society of London's prestigious Darwin–Wallace Medal in 1958.
Fisher's important contributions to both genetics and statistics are emphasized by the remark of L.J. Savage, "I occasionally meet geneticists who ask me whether it is true that the great geneticist R.A. Fisher was also an important statistician" (''Annals of Statistics'', 1976).
Category:1890 births Category:1962 deaths Category:20th-century mathematicians Category:Academics of University College London Category:Alumni of Gonville and Caius College, Cambridge Category:Biostatisticians Category:English Anglicans Category:English eugenicists Category:English geneticists Category:English mathematicians Category:English statisticians Category:Evolutionary biologists Category:Fellows of Gonville and Caius College, Cambridge Category:Fellows of the Royal Society Category:Geneticists Category:Knights Bachelor Category:Old Harrovians Category:People from East Finchley Category:Population geneticists Category:Presidents of the Royal Statistical Society Category:Recipients of the Copley Medal Category:Rothamsted statisticians Category:Royal Medal winners Category:Researchers in stochastics Category:Theoretical biologists Category:Winners of the Guy Medal in Gold
zh-min-nan:Ronald Fisher bg:Роналд Фишер ca:Ronald Aylmer Fisher cs:Ronald Fisher cy:Ronald Fisher da:Ronald Fisher de:Ronald Aylmer Fisher et:Ronald Fisher es:Ronald Fisher eu:Ronald Fisher fr:Ronald Aylmer Fisher ko:로널드 피셔 id:Ronald Fisher it:Ronald Fisher he:רונלד פישר ht:Ronald Fisher nl:Ronald Aylmer Fisher ja:ロナルド・フィッシャー pl:Ronald Fisher pt:Ronald Fisher ro:Ronald Fisher ru:Фишер, Рональд Эйлмер simple:Ronald Fisher sl:Ronald Aylmer Fisher su:Ronald Fisher fi:Ronald Fisher sv:Ronald Fisher tr:Ronald Fisher uk:Рональд Фішер vi:Ronald Fisher zh:羅納德·費雪This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
Fisher was born in London and started writing poetry in 1962. His early long project ''Place'' was published in a series of books and pamphlets in the 1970s. He worked on a project called ''Gravity as a consequence of shape'' from 1982 which he completed in 2007. This was followed by a book of emblems (poem-image-commentary) called "Proposals". As editor of ''Spanner'' and "New London Pride", he has published many of the Revival poets. He was also co-editor of Aloes Books. His last retrospective painting show was in Hereford Museum & Art Gallery in 1993. He has over 140 publications in his name consisting of art documentation, poetry and theory. He has been working on a book of essays "Assemblage & Empathy" regarding American Poetry & Art Since 1950 and other essays on poetics.
Fisher is Emeritus Professor of Poetry and Art at Manchester Metropolitan University. He has exhibited widely and his work is represented in the Tate Gallery.
He edits the magazine ''Spanner''.
Category:1944 births Category:Living people Category:English poets Category:English painters Category:Contemporary painters Category:British Poetry Revival
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.