Name | Lunar Orbiter 2 |
---|---|
Organization | NASA |
Major contractors | Langley Research Center |
mission type | Orbiter |
satellite of | Moon |
launch | November 6, 1966 at 23:21:00 UTC |
launch vehicle | Atlas-Agena D |
decay | Impacted lunar surface onOctober 11, 1967, at |
mission duration | 339 days |
mass | |
nssdc id | 1966-100A |
orbital elements | yes |
semimajor axis | |
eccentricity | .35 |
inclination | 11.9° |
orbital period | 208.07 minutes |
apoapsis | |
periapsis | |
orbits | 2,346 }} |
The Lunar Orbiter 2 spacecraft was designed primarily to photograph smooth areas of the lunar surface for selection and verification of safe landing sites for the Surveyor and Apollo missions. It was also equipped to collect selenodetic, radiation intensity, and micrometeoroid impact data.
The spacecraft was placed in a cislunar trajectory and injected into an elliptical near-equatorial lunar orbit for data acquisition after 92.5 hours flight time. The initial orbit was at an inclination of 11.8 degrees. The perilune was lowered to five days later after 33 orbits. A failure of the amplifier on the final day of readout, December 7, resulted in the loss of six photographs. On December 8, 1966 the inclination was altered to 17.5 degrees to provide new data on lunar gravity.
The spacecraft acquired photographic data from November 18 to 25, 1966, and readout occurred through December 7, 1966. A total of 609 high resolution and 208 medium resolution frames were returned, most of excellent quality with resolutions down to . These included a spectacular oblique picture of Copernicus crater, which was dubbed by the news media as one of the great pictures of the century. Accurate data were acquired from all other experiments throughout the mission. Three micrometeorite impacts were recorded. The spacecraft was used for tracking purposes until it impacted upon the lunar surface on command at 3.0 degrees N latitude, 119.1 degrees E longitude (selenographic coordinates) on October 11, 1967.
+Instruments | |
! Lunar Photographic Studies | Evaluation of Apollo and Surveyor landing sites |
! Meteoroid Detectors | Detection of micrometeoroids in the lunar environment |
! Caesium Iodide Dosimeters | Radiation environment en route to and near the Moon |
! Selenodesy | Gravitational field and physical properties of the Moon |
2 Category:1966 in spaceflight
bg:Лунар Орбитър 2 cs:Lunar Orbiter 2 es:Lunar Orbiter 2 it:Lunar Orbiter 2 pl:Lunar Orbiter 2 sk:Lunar Orbiter 2This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The Lunar Orbiter program was a series of five unmanned lunar orbiter missions launched by the United States from 1966 through 1967. Intended to help select Apollo landing sites by mapping the Moon's surface, they provided the first photographs from lunar orbit.
All five missions were successful, and 99% of the Moon was mapped from photographs taken with a resolution of 60 meters or better. The first three missions were dedicated to imaging 20 potential manned lunar landing sites, selected based on Earth-based observations. These were flown at low inclination orbits. The fourth and fifth missions were devoted to broader scientific objectives and were flown in high-altitude polar orbits. Lunar Orbiter 4 photographed the entire nearside and 9% of the far side, and Lunar Orbiter 5 completed the far side coverage and acquired medium (20 m) and high (2 m) resolution images of 36 pre-selected areas. All Lunar Orbiter craft were launched by an Atlas-Agena D launch vehicle.
The Lunar Orbiters had an ingenious imaging system, which consisted of a dual-lens camera, a film processing unit, a readout scanner, and a film handling apparatus. Both lenses, a 610 mm narrow angle high resolution (HR) lens and an 80 mm wide angle medium resolution (MR) lens, placed their frame exposures on a single roll of 70 mm film. The axes of the two cameras were coincident so the area imaged in the HR frames were centered within the MR frame areas. The film was moved during exposure to compensate for the spacecraft velocity, which was estimated by an electro-optical sensor. The film was then processed, scanned, and the images transmitted back to Earth.
During the Lunar Orbiter missions, the first pictures of Earth as a whole were taken, beginning with Earth-rise over the lunar surface by Lunar Orbiter 1 in August, 1966. The first full picture of the whole Earth was taken by Lunar Orbiter 5 in August, 1967. See http://www.aiga.org/content.cfm/symbolizing-the-green-movement. The second photo of the whole Earth was taken by Lunar Orbiter V on November 10, 1967. This photo was published by Stewart Brand in the first Whole Earth Catalog in the fall of 1968. See http://sciencetrack.blogspot.com/2007/07/first-photo-of-whole-earth.html and http://www.aiga.org/content.cfm/symbolizing-the-green-movement
The main bus of the Lunar Orbiter had the general shape of a truncated cone, 1.65 metres tall and 1.5 m in diameter at the base. The spacecraft was composed of three decks supported by trusses and an arch. The equipment deck at the base of the craft held the battery, transponder, flight programmer, inertial reference unit (IRU), Canopus star tracker, command decoder, multiplex encoder, traveling wave tube amplifier (TWTA), and the photographic system. Four solar panels were mounted to extend out from this deck with a total span across of 3.72 m. Also extending out from the base of the spacecraft were a high gain antenna on a 1.32 m boom and a low gain antenna on a 2.08 m boom. Above the equipment deck, the middle deck held the velocity control engine, propellant, oxidizer and pressurization tanks, Sun sensors, and micro-meteoroid detectors. The third deck consisted of a heat shield to protect the spacecraft from the firing of the velocity control engine. The nozzle of the engine protruded through the center of the shield. Mounted on the perimeter of the top deck were four attitude control thrusters.
Power of 375 W was provided by the four solar arrays containing 10,856 n/p solar cells which would directly run the spacecraft and also charge the 12 A·h nickel-cadmium battery. The batteries were used during brief periods of occultation when no solar power was available. Propulsion for major maneuvers was provided by the gimballed velocity control engine, a hypergolic 100 pound-force (445 N) thrust Marquardt rocket motor. Three axis stabilization and attitude control were provided by four one lbf (4 N) nitrogen gas jets. Navigational knowledge was provided by five Sun sensors, Canopus star sensor, and the IRU equipped with internal gyros. Communications were via a 10 W transmitter and the directional 1 m diameter high gain antenna for transmission of photographs and a 0.5 W transmitter and omnidirectional low gain antenna for other communications. Both antennas operated in S-band at 2295 MHz. Thermal control was maintained by a multilayer aluminized Mylar and Dacron thermal blanket which enshrouded the main bus, special paint, insulation, and small heaters.
The photographic system was provided by Eastman Kodak and derived from a system designed for the U-2 and SR-71 reconnaissance aircraft. The camera used two lenses to simultaneously expose a wide-angle and a high-resolution image on the same film. The wide-angle, medium resolution mode used a 80 mm F 2.8 Xenotar lens manufactured by Schneider Kreuznach, Germany. The high-resolution mode used a 610 mm F 5.6 Panoramic lens manufactured by the Pacific Optical Company. The film was developed on-orbit, and then scanned by a photomultiplier for transmission to Earth.
Below is the flight log information of the five Lunar Orbiter photographic missions:
Several atlases and books featuring Lunar Orbiter photographs have been published. Perhaps the most definitive was that of Bowker and Hughes (1971); it contained 675 photographic plates with approximately global coverage of the Moon. In part because of high interest in the data and in part because that atlas is out of print, the task was undertaken at the Lunar and Planetary Institute to scan the large-format prints of Lunar Orbiter data. These were made available online as the Digital Lunar Orbiter Photographic Atlas of the Moon.
In addition, the USGS digitization project created frames from very high resolution Lunar Orbiter images for several 'sites of scientific interest.' These sites had been identified in the 1960s when the Apollo landing sites were being selected. Frames for sites such as the Apollo 12 landing site, the Marius Hills, and the Sulpicius Gallus rille have been released.
In 2007, the Lunar Orbiter Image Recovery Project (LOIRP) began a process to convert the Lunar Orbiter Images directly from the original Ampex FR-900 analog video recordings of the spacecraft data to digital image format, a change which provided vastly improved resolution over the original images released in the 1960s. The first of these restored images were released in late 2008.
bg:Лунар Орбитър cs:Program Lunar Orbiter da:Lunar Orbiter-programmet de:Lunar Orbiter es:Lunar Orbiter fr:Programme Lunar Orbiter he:לונר אורביטר it:Programma Lunar Orbiter hu:Lunar Orbiter-program ja:ルナ・オービター計画 pl:Program Lunar Orbiter ru:Лунар орбитер (программа) fi:Lunar Orbiter sv:Lunar Orbiter-programmet tl:Programang Lunar Orbiter zh:月球軌道計畫
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.