Cladistics (Ancient Greek: κλάδος, klados, "branch") is a method of classifying species of organisms into groups called clades, which consist of an ancestor organism and all its descendants (and nothing else). For example, birds, dinosaurs, crocodiles, and all descendants (living or extinct) of their most recent common ancestor form a clade.[1] In the terms of biological systematics, a clade is a single "branch" on the "tree of life", a monophyletic group.
Cladistics can be distinguished from other taxonomic systems, such as morphology-based phenetics, by its focus on shared derived characters (synapomorphies). Systems developed earlier usually employed overall morphological similarity to group species into genera, families and other higher level groups (taxa); cladistic classifications (usually in the form of trees called cladograms) are intended to reflect the relative recency of common ancestry or the sharing of homologous features. Cladistics is also distinguished by an emphasis on parsimony and hypothesis testing (particularly falsificationism), leading to a claim that cladistics is more objective than systems which rely on subjective judgements of relationship based on similarity.[2]
Cladistics originated in the work of the German entomologist Willi Hennig, who referred to it as "phylogenetic systematics" (also the name of his 1966 book); the use of the terms "cladistics" and "clade" was popularized by other researchers. The technique and sometimes the name have been successfully applied in other disciplines: for example, to determine the relationships between the surviving manuscripts of the Canterbury Tales[3] and 53 manuscripts of the Sanskrit Carakasaṃhitā.[4]
Cladists use cladograms – diagrams which show ancestral relations between species – to represent the monophyletic relationships of species, termed sister-group relationships. This is interpreted as representing phylogeny, or evolutionary relationships. Although traditionally such cladograms were generated largely on the basis of morphological characters, genetic sequencing data and computational phylogenetics are now very commonly used in the generation of cladograms.
Cladistics, either generally or in specific applications, has been criticized from its beginnings. A decision as to whether a particular character is a synapomorphy or not may be challenged as involving subjective judgements,[5] raising the issue of whether cladistics as actually practised is as objective as has been claimed. Formal classifications based on cladistic reasoning are said to emphasize ancestry at the expense of descriptive characteristics, and thus ignore biologically sensible, clearly defined groups which do not fall into clades (e.g. reptiles as traditionally defined or prokaryotes).[6]
The term clade was introduced in 1958 by Julian Huxley, cladistic by Cain and Harrison in 1960, and cladist (for an adherent of Hennig's school) by Mayr in 1965.[7] Hennig referred to his own approach as phylogenetic systematics. From the time of his original formulation until the end of the 1980s cladistics remained a minority approach to classification. However, in the 1990s it rapidly became the dominant method of classification in evolutionary biology. Computers made it possible to process large quantities of data about organisms and their characteristics. At about the same time the development of effective polymerase chain reaction techniques made it possible to apply cladistic methods of analysis to biochemical and molecular genetic features of organisms as well as to anatomical ones.[8]
For some decades in the mid to late twentieth century, a commonly used methodology was phenetics ("numerical taxonomy"). This can be seen as a predecessor[9] to some methods of today's cladistics (namely distance matrix methods such as neighbor-joining), but made no attempt to resolve phylogeny, only similarities.
A clade is a group of taxa consisting only of an ancestor taxon and all of its descendant taxa. In the diagram provided (a cladogram), it is hypothesized that all vertebrates, including ray-finned fishes (Actinopterygii), had a common ancestor all of whose descendants were vertebrates, and so form a clade. Within the vertebrates, all tetrapods, including amphibians, mammals, reptiles (as traditionally defined) and birds are hypothesized to have had a common ancestor all of whose descendants were tetrapods, and so also form a clade. The tetrapod ancestor was a descendant of the original vertebrate ancestor, but is not an ancestor of any ray-finned fish living today.
An important caution is that any cladogram is a provisional hypothesis. There is genetic evidence, for example, that Testudines, Aves, and Crocodylia share a common ancestor that was not an ancestor of the Lepidosauria. This has led some researchers to propose a cladogram at variance with the one presented here, showing a clade that does not include Lepidosauria but does contain the other three groups.[10]
The relationship between clades can be described in several ways:
- A clade is basal to another clade if it contains that other clade as a subset within it. In the example, the vertebrate clade is basal to the tetrapod and ray-finned fish clades. (Some authors have used "basal" differently to mean a clade that is less species-rich than a sister clade, with such a deficit being taken as an indication of 'primitiveness'. Others consider this usage to be incorrect.[11])
- A clade located within a clade is said to be nested within that clade. In the diagram, the tetrapod clade is nested within the vertebrate clade.
- Two clades are sisters if they have an immediate common ancestor. In the diagram, crocodiles and birds are sister clades, as are modern amphibians and amniotes.
The following terms are used to identify shared or distinct characters among groups:[12][13][14]
- Plesiomorphy ("close form") or ancestral state, also symplesiomorphy ("shared plesiomorphy", i.e. "shared close form"), is a characteristic that is present at the base of a tree (cladogram). Since a plesiomorphy that is inherited from the common ancestor may appear anywhere in a tree, its presence provides no evidence of relationships within the tree. The traditional definition of reptiles (the blue group in the diagram) includes being cold-blooded (i.e. not maintaining a constant high body temperature), whereas birds are warm-blooded. Since cold-bloodedness is a plesiomorphy, inherited from the common ancestor of traditional reptiles and birds, it should not be used to define a group in a system based on cladistics.
- Apomorphy ("separate form") or derived state is a characteristic believed to have evolved within the tree. It can thus be used to separate one group in the tree from the rest. Within the group which shares the apomorphy it is a synapomorphy ("shared apomorphy", i.e. "shared separate form"). For example, within the vertebrates, all tetrapods (and only tetrapods) have four limbs; thus, having four limbs is a synapomorphy for tetrapods. All the tetrapods can legitimately be grouped together because they have four limbs.
- Homoplasy is a characteristic shared by members of a tree but not present in their common ancestor. It arises by convergence or reversion. Both mammals and birds are able to maintain a high constant body temperature (i.e. they are 'warm-blooded'). However, the ancestors of each group did not share this character, so it must have evolved independently. Mammals and birds should not be grouped together on the basis that they are warm-blooded.
The terms (sym)plesiomorphy and (syn)apomorphy are relative and their application depends on the position of a group within a tree. An apomorphy of one clade is a plesiomorphy of another contained within it. For example, when trying to decide whether tetrapods should form a clade, an important question is whether having four limbs is a synapomorphy of all the taxa to be included within Tetrapoda: did all the possible members of the Tetrapoda inherit four limbs from a common ancestor, whereas all other vertebrates did not? By contrast, for a group within the tetrapods, such as birds, having four limbs is a plesiomorphy. The fact that ostriches and rheas both have four limbs does not provide any support for putting them into a separate group of 'flightless birds'. Using these two terms allows a greater precision in the discussion of homology, in particular allowing clear expression of the hierarchical relationships among different homologies.
It can be difficult to decide whether a character is in fact the same, and thus can be classified as a synapomorphy which may identify a group, or whether it only appears to be the same, and is thus a homoplasy which cannot identify a group. There is a danger of circular reasoning: assumptions about the shape of a phylogenetic tree are used to justify decisions about characters, which are then used as evidence for the shape of the tree.[15]
Three main types of group can be identified on the basis of their relationships in cladograms.[13][14][16] The three can be defined in two different but related ways, as shown in the table below. The first is in terms of the shape of a set of nodes taken from a cladogram. In this approach, an 'ancestor node' is simply a branching point in the diagram; it may or may not correspond to an actual ancestor. The second is in terms of the characters of the taxa being classified and how these characters have been inherited. In this approach, an ancestor is an actual taxon, whether currently known or not.
Term |
Node-based definition |
Character-based definition |
Monophyly |
A monophyletic group of nodes in a tree is one which includes all the nodes descended from their most recent common ancestor node, plus the most recent common ancestor node, but no other nodes. |
A monophyletic group of taxa is characterized by one or more synapomorphies: derived characters inherited by all members of the group from ancestors and not inherited by any other taxa. A monophyletic group is a 'clade'. A 'crown group' is an example of a monophyletic group. |
Paraphyly |
A paraphyletic group of nodes in a tree is one which is constructed by taking a monophyletic group and removing one or more smaller monophyletic groups.[17] (Removing one group produces a singly paraphyletic group, removing two a doubly paraphylectic group, and so on.[18]) A paraphyletic group is necessarily non-monophyletic. |
A paraphyletic group of taxa is characterized by one or more (sym)plesiomorphies: characters inherited from ancestors but not present in all of their descendants. As a consequence, a paraphyletic group is truncated, in that it excludes one or more monophyletic taxa from an initially monophyletic group. An alternative name is an 'evolutionary grade', referring to the ancestral character state within the group. A 'stem group' is an example of a paraphyletic group. |
Polyphyly |
A polyphyletic group of nodes in a tree is one which is neither monophyletic nor paraphyletic. |
A polyphyletic group of taxa is characterized by one or more homoplasies: characters which have converged or reverted so as to appear to be the same but which have not been inherited from common ancestors. As a consequence, polyphyletic groups of taxa are totally artificial. |
Three alternative ways to define a clade
The node-based definition of a monophyletic group (i.e. a clade) given above regards the lines in the cladogram only as a way of showing connections between taxa. This is appropriate when considering only living (extant) taxa; however, when extinct taxa are to be included in a cladogram, lines correspond to sequences of ancestors. There are two alternative ways of defining a clade which explicitly take into account the line below the branching point at the base of a clade.[19] These definitions are most notably set out in the PhyloCode.
Consider how a clade combining A and B in the diagram can be defined.
- Node-based: The node-based definition specifies A+B as the last common ancestor of A and B, and all descendants of that ancestor. It thus excludes from the clade the line below the junction of A and B. Crown groups are a type of node-based clade.
- Branch-based: A branch-based definition specifies A+B as the first ancestor of A which is not also an ancestor of C, and all descendants of that ancestor. It thus includes in the clade the line below the junction of A and B. (Many taxonomists[20][21][22] use the term "stem-based" instead of "branch-based.") Total groups are a type of branch-based clade.
- Apomorphy-based: An apomorphy-based definition specifies A+B as the first ancestor of A to possess derived trait M homologously (that is, synapomorphically) with that trait in A, and all descendants of that ancestor. It thus includes in the clade only that part of the line below the junction of A and B which corresponds to ancestors possessing the apomorphy. The process of identifying and naming groups based on apomorphies is the method that most resembles classical systematics, with the proviso that cladistic taxa always denote a clade.
Note that these alternative definitions do not alter the classification of the tips of the tree, and so are equivalent if only living (extant) taxa are being considered.
Main articles:
Cladogram and
Polytomy
Cladists use cladograms, diagrams which show ancestral relations between taxa, to represent the evolutionary tree of life. Although traditionally such cladograms were generated largely on the basis of morphological characters, molecular sequencing data and computational phylogenetics are now very commonly used in the generation of cladograms.
The starting point of cladistic analysis is a group of species and molecular, morphological, or other data characterizing those species. The end result is a tree-like relationship diagram called a cladogram,[23] or sometimes a dendrogram (Greek for "tree drawing").[24] The cladogram graphically represents a hypothetical evolutionary process. Cladograms are subject to revision as additional data become available.
The terms "evolutionary tree", and sometimes "phylogenetic tree" are often used synonymously with cladogram[25] but others treat phylogenetic tree as a broader term that includes trees generated with a nonevolutionary emphasis. In cladograms, all species lie at the leaves. The two taxa on either side of a split, with a common ancestor and no additional descendents, are called "sister taxa" or "sister groups".[26] Each subtree, whether it contains only two or a hundred thousand items, is called a "clade". Many cladists require that all forks in a cladogram be 2-way forks. Some cladograms include 3-way or 4-way forks when there are insufficient data to resolve the forking to a higher level of detail (see under phylogenetic tree).
For a given set of taxa, the number of distinct cladograms that can be drawn (ignoring which cladogram best matches the taxon characteristics) is:[27]
Number of taxa |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
N |
Number of rooted cladograms |
1 |
3 |
15 |
105 |
945 |
10,395 |
135,135 |
2,027,025 |
34,459,425 |
1*3*5*7*...*(2N-3) |
This superexponential growth of the number of possible cladograms explains why manual creation of cladograms becomes very difficult when the number of taxa is large. If a cladogram represents N taxa, the number of levels (the "depth") in the cladogram is on the order of log2(N).[28] For example, if there are 32 species of deer, a cladogram representing deer could be around 5 levels deep (because 25 = 32), although this is really just the lower limit. A cladogram representing the complete tree of life, with about 10 million species, could be about 23 levels deep. This formula gives a lower limit, with the actual depth generally a larger value, because the various branches of the cladogram will not be uniformly deep. Conversely, the depth may be shallower if forks larger than 2-way forks are permitted.
A cladogram tree has an implicit time axis,[29] with time running forward from the base of the tree to the leaves of the tree. If the approximate date (for example, expressed as millions of years ago) of all the evolutionary forks were known, those dates could be captured in the cladogram. Thus, the time axis of the cladogram could be assigned a time scale (e.g. 1 cm = 1 million years), and the forks of the tree could be graphically located along the time axis. Such cladograms are called scaled cladograms. Many cladograms are not of this type, for a variety of reasons:
- They are built from species characteristics that cannot be readily dated (e.g. morphological data in the absence of fossils or other dating information)
- When the characteristic data are DNA/RNA sequences, it is feasible to use sequence differences to establish the relative ages of the forks, but converting those ages into actual years requires a significant approximation of the rate of change[30]
- Even when the dating information is available, positioning the cladogram's forks along the time axis in proportion to their dates may cause the cladogram to become difficult to understand or hard to fit within a human-readable format
Cladistics makes no distinction between extinct and extant species,[31] and it is appropriate to include extinct species in the group of organisms being analyzed. Cladograms that are based on DNA/RNA generally do not include extinct species because DNA/RNA samples from extinct species are rare. Cladograms based on morphology, especially morphological characteristics that are preserved in fossils, are more likely to include extinct species.
A highly resolved, automatically generated
tree of life based on completely sequenced genomes
[32]
Most taxonomists have used the traditional approaches of Linnaean taxonomy and later Evolutionary taxonomy to organize life forms. These approaches use several fixed levels of a hierarchy, such as kingdom, phylum, class, order, and family. Phylogenetic nomenclature does not feature those terms, because the evolutionary tree is so deep and so complex that it is inadvisable to set a fixed number of levels.
Evolutionary taxonomy insists that groups reflect phylogenies. In contrast, Linnaean taxonomy allows both monophyletic and paraphyletic groups as taxa. Since the early 20th century, Linnaean taxonomists have generally attempted to make at least family- and lower-level taxa (i.e. those regulated by the codes of nomenclature) monophyletic. Ernst Mayr in 1985 drew a distinction between the terms cladistics and phylogeny: "It would seem to me to be quite evident that the two concepts of phylogeny (and their role in the construction of classifications) are sufficiently different to require terminological distinction. The term phylogeny should be retained for the broad concept of phylogeny, promoted by Darwin and adopted by most students of phylogeny in the ensuing 90 years. The concept of phylogeny as mere genealogy should be terminologically distinguished as cladistics. To lump the two concepts together terminologically could not help but produce harmful equivocation."[33]
Willi Hennig's pioneering work provoked a spirited debate[34] about the relative merits of phylogenetic nomenclature versus Linnaean or evolutionary taxonomy, which has continued down to the present;[35] however Hennig did not advocate abandoning the Linnaean nomenclatural system. Some of the debates in which the cladists were engaged had been running since the 19th century, but they were renewed fervor,[36] as can be seen from the Foreword to Hennig (1979) by Rosen, Nelson, and Patterson:[37]
"Encumbered with vague and slippery ideas about adaptation, fitness, biological species and natural selection, neo-Darwinism (summed up in the "evolutionary" systematics of Mayr and Simpson) not only lacked a definable investigatory method, but came to depend, both for evolutionary interpretation and classification, on consensus or authority."
Phylogenetic nomenclature strictly and exclusively follows phylogeny and has arbitrarily deep trees with binary branching: each taxon corresponds to a clade. Linnaean taxonomy, while since the advent of evolutionary theory following phylogeny, also may subjectively consider similarity and has a fixed hierarchy of taxonomic ranks, and its taxa are not required to correspond to clades.
Many cladists discourage the use of paraphyletic groups in classification of organisms, because they detract from cladistics' emphasis on clades (monophyletic groups). In contrast, proponents of the use of paraphyletic groups argue that any dividing line in a cladogram creates both a monophyletic section above and a paraphyletic section below. They also contend that paraphyletic taxa are necessary for classifying earlier sections of the tree – for instance, the early vertebrates that would someday evolve into the family Hominidae cannot be placed in any other monophyletic family. They also argue that paraphyletic taxa provide information about significant changes in organisms' morphology, ecology, or life history – in short, that both paraphyletic groups and clades are valuable notions with separate purposes.[citation needed]
According to Brent D. Mishler, the cladistic tree of life is a fractal:[38]
"The tree of life is inherently fractal-like in its complexity, .... Look closely at the 'lineage' of a phylogeny ... and it dissolves into many smaller lineages, and so on, down to a very fine scale."
The overall shape of a dichotomous (bifurcating) tree is recursive; as a viewpoint zooms into the tree of life, the same type of tree appears no matter what the scale. When extinct species are considered (both known and unknown), the complexity and depth of the tree can be very large. Moreover the tree continues to recreate itself by bifurcation, a series of events called fractal evolution.[39] Every single speciation event, including all the species that are now extinct, represents an additional fork on the hypothetical, complete cladogram of the tree of life.
The tree of life is a quasi-self-similar fractal; that is, the deep reconstruction is not as regular as the shallow reconstruction.[40] By shallow Mishler means the most recent branching toward and at the tips, and by deep the more ancient branches further back, which are harder to reconstruct and are missing unknown extinct lines. In the shallow part of the tree, branching events are relatively regular; it is often possible to estimate the times between them. In the deep part of the tree, "homology assessments" are "difficult" and the times vary widely.[41] At this level Eldredge's and Gould's punctuated equilibrium applies, which hypothesizes long periods of stability followed by punctuations of rapid speciation, based on the fossil record.
A formal code of phylogenetic nomenclature, the PhyloCode,[42] is currently under development. It is intended for use by both those who would like to abandon Linnaean taxonomy and those who would like to use taxa and clades side by side. In several instances (see for example Hesperornithes) it has been employed to clarify uncertainties in Linnaean systematics so that in combination they yield a taxonomy that unambiguously places problematic groups in the evolutionary tree in a way that is consistent with current knowledge.
For example, Linnaean taxonomy contains the taxon Tetrapoda, defined morphologically as vertebrates with four limbs (as well as animals with four-limbed ancestors, such as snakes), which is often given the rank of superclass, and divides into the classes Amphibia, Reptilia, Aves, Mammalia.
Phylogenetic nomenclature also contains the taxon Tetrapoda (see the diagram under Clades above), whose living members can be classified phylogenically as "the clade defined by the common ancestor of amphibians and mammals", or more precisely the clade defined by the common ancestor of a specific amphibian and mammal (or bird or snake). This definition gives us the Crown group tetrapods (or Crown-Tetrapoda). A few primitive four legged ancestors (the Ichthyostegalia) fall outside Crown-Tetrapoda.[43] An alternative is to define tetrapoda as all animals more closely related to mammals than to lungfish (our nearest living non-tetrapod relatives). In this definition, the ichthyostegalians are included, together with a host of fossil animals usually classed as crossopterygian fish. This wider definition is termed Pan-Tetrapoda. A third option is to define Tetrapoda according to their apomorphy (their unique trait, i.e. having feet with toes rather than fins), a definition that yield the same group as the Linnaean taxon.
None of the phylogenetic taxa as described above have a rank, and neither do its subtaxa. All the subclades are contained within one another. The clades are not divided into several non-overlapping taxa (as in traditional taxonomy), rather the clade is split into two clades at the first branching, a process repeated throughout. With regards to the traditional classes, Aves and Mammalia are subclades, contained in the subclade Amniota, while Reptilia and Amphibia are paraphyletic taxa, not clades.[44] Instead of classifying non-mammalian, non-avian amniotes as reptiles, Amniota is divided into the two clades Sauropsida (which contains birds and all living amniotes other than mammals, including all living traditional reptiles) and Theropsida (mammals and the extinct mammal-like reptiles). Similarly, Amphibia can be split into the Batrachomorpha (fossil amphibians more closely related to modern amphibians) and Reptiliomorpha, the latter of which the amiotes is a sub-clade.[45] Ichthyostegalians and other Stem-tetrapods represent sister groups from splits predating the Batrachomorpha/Reptilopmorpha split.[43]
Proponents of phylogenetic nomenclature enumerate key distinctions between phylogenetic nomenclature and Linnaean taxonomy as follows:[46]
Phylogenetic Nomenclature |
Linnaean Taxonomy |
Handles arbitrarily deep trees. |
Often must invent new level names (such as superorder, suborder, infraorder, parvorder, magnorder) to accommodate new discoveries. Biased towards trees about 4 to 12 levels deep. |
Discourages naming or use of groups that are not monophyletic |
Acceptable to name and use paraphyletic groups |
Primary goal is to reflect actual process of evolution |
Primary goal is to group species based on morphological similarities |
Assumes that the shape of the tree will change frequently with new discoveries |
New discoveries often require renaming or releveling of Classes, Orders, and Kingdoms |
Critics of phylogenetic nomenclature include Ashlock,[47] Mayr,[48] and Williams.[49] Some of their criticisms include:
Phylogenetic Nomenclature |
Linnaean Taxonomy |
Limited to entities related by evolution or ancestry |
Supports groupings without reference to evolution or ancestry |
Does not include a process for naming species |
Includes a process for giving unique names to species |
Clade definitions emphasize ancestry at the expense of descriptive characteristics |
Taxa definitions based on tangible characteristics |
Ignores sensible, clearly defined paraphyletic groups such as reptiles |
Permits clearly defined groups such as reptiles |
Difficult to determine if a given species is in a clade or not (e.g. if clade X is defined as "most recent common ancestor of A and B along with its descendants", then the only way to determine if species Y is in the clade is to perform a complex evolutionary analysis) |
Straightforward process to determine if a given species is in a taxon or not |
Limited to organisms that evolved by inherited traits; not applicable to organisms that evolved via complex gene sharing or lateral transfer |
Applicable to all organisms, regardless of evolutionary mechanism |
The comparisons used to acquire data on which cladograms can be based are not limited to the field of biology.[50] Any group of individuals or classes, hypothesized to have a common ancestor, and to which a set of common characteristics may or may not apply, can be compared pairwise. Cladograms can be used to depict the hypothetical descent relationships within groups of items in many different academic realms. The only requirement is that the items have characteristics that can be identified and measured.
Recent attempts to use cladistic methods outside of biology address the reconstruction of lineages in:
- Anthropology and archeology.[51] Compares cultures or artifacts using groups of cultural traits or artifact features.
- Linguistics.[52] Compares languages using groups of linguistic features.[clarification needed][how is that different from traditional historical linguistics?]
- Textual criticism or Stemmatics.Compares manuscripts of the same work (original lost) using groups of distinctive copying errors. This differs from traditional historical-comparative linguistics in enabling the editor to evaluate and place in genetic relationship large groups of manuscripts with large numbers of variants, that would be impossible to handle manually. It also enables parsimony analysis of contaminated traditions of transmission that would be impossible to evaluate manually in a reasonable period of time. See [53] and [54] for case studies.
- Ethology.[55] Compares animal species using behavioral traits presumed hereditary.
- Astrophysics.[56] Infers the history of relationships between galaxies to create branching diagram hypotheses of galaxy diversification.
- ^ Glossary entry "clade" Understanding Evolution. 2010. University of California Museum of Paleontology.
- ^ Phillips 2000
- ^ "Canterbury Tales Project". http://www.canterburytalesproject.org. Retrieved 4 July 2009.
- ^ Maas 2010
- ^ James & Pourtless IV 2009, p. 21ff.
- ^ Mayr 1974, p. 104: "Since birds and crocodilians (excluding all other living reptiles) are derived from a common ancestor, his method [cladistics] forces the cladist to recognize a taxon for birds and crocodilians together, even though this is a useless assemblage."
- ^ Dupuis 1984
- ^ Baron & Høeg 2005
- ^ Mayr 1982, p. 221
- ^ Hugall, Foster & Lee 2007
- ^ Krell & Cranston 2004
- ^ Patterson 1982, pp. 21–74
- ^ a b Patterson 1988
- ^ a b de Pinna 1991
- ^ James & Pourtless IV 2009, p. 25: "Synapomorphies are invoked to defend the hypothesis; the hypothesis is invoked to defend the synapomorphies."
- ^ Patterson 1982
- ^ Many sources give a verbal definition of 'paraphyletic' which does not require the missing groups to be monophyletic. However, when diagrams are presented representing paraphyletic groups, these invariably show the missing groups as monophyletic. See e.g. Wiley et al. 1991, p. 4.
- ^ Taylor 2003
- ^ de Queiroz & Gauthier 1994
- ^ Jeremy Martin and Michael Benton (2008). "Crown clades in vertebrate nomenclature: Correcting the definition of Crocodylia". Systematic Biology 57 (1): 173–181. DOI:10.1080/10635150801910469.
- ^ Michel Laurin and Jason S. Anderson (2004). "Meaning of the name Tetrapoda in the scientific literature: an exchange". Systematic Biology 53 (1): 68–80. DOI:10.1080/10635150490264716.
- ^ Matjaž Kuntner and Ingi Agnarsson (2006). "Are the Linnean and phylogenetic nomenclatural systems combinable? Recommendations for biological nomenclature". Systematic Biology 55 (5): 774–784. DOI:10.1080/10635150600981596. http://www.theridiidae.com/uploads/6/6/8/0/6680387/kuntneragnarsson2006.pdf.
- ^ Cracraft & Donaghue 2004, pp. 45, 78, 555
- ^ Weygoldt 1998
- ^ Singh 2004, pp. 203–4
- ^ Gould 1983, p. 357
- ^ Lowe 2004, p. 164
- ^ Aldous & Pemantle 1996
- ^ Freeman 1998, p. 380
- ^ Carroll 1997, p. 80
- ^ Scott-Ram 1990, p. 83
- ^ Letunic & Bork 2007
- ^ Mayr 1985
- ^ Wheeler 2000
- ^ Benton 2000
- ^ Hull 1988, pp. 232–276
- ^ Hennig 1979, p. ix
- ^ Mishler 2005, p. 57
- ^ Gordon 1999, p. 664
- ^ Mishler 2005, p. 62
- ^ Mishler 2005, p. 62: "In deep reconstruction problems, the branch events at issue happened a relatively long time ago and the ... relative lengths of ... branches are often quite different...."
- ^ Pennisi 2001
- ^ a b Clarck, J.A. (1997): Ichthyostega, Tree of Life website
- ^ Tudge 2002, p. 83
- ^ Benton 2004 – see also Taxonomic hierarchy of the vertebrates
- ^ Hennig 1975.
- ^ Ashlock 1971, Ashlock 1972, Ashlock 1974, Ashlock 1979.
- ^ Mayr 1974, Mayr 1978, Mayr & Bock 2002
- ^ Williams 1992
- ^ Mace, Clare & Shennan 2005, p. 1
- ^ Lipo et al. 2006
- ^ Oppenheimer 2006, pp. 290–300, 340–56
- ^ Robinson & O’Hara 1996
- ^ maas 2010
- ^ Jerison 2003, p. 254
- ^ Fraix-Burnet et al. 2006
- Aldous, David & Pemantle, Robin (1996), "Probability Distributions on Cladograms", Random Discrete Structures, New York: Springer, pp. 13, ISBN 978-0-387-94623-8
- Ashlock, Peter D. (1971), "Monophyly and associated terms", Systematic Zoology 20 (1): 63–69, DOI:10.2307/2412223, JSTOR 2412223.
- Ashlock, Peter D. (1972), "Monophyly again", Systematic Zoology 21 (4): 430–438, DOI:10.2307/2412435, JSTOR 2412435.
- Ashlock, Peter D. (1974), "The uses of cladistics", Annual Review of Ecology and Systematics 5: 81–99, DOI:10.1146/annurev.es.05.110174.000501, ISSN 0066-4162.
- Ashlock, Peter D. (1979), "An evolutionary systematist’s view of classification", Systematic Zoology 28 (4): 441–450, DOI:10.2307/2412559, JSTOR 2412559.
- Baron, C. & Høeg, J.T. (2005), "Gould, Scharm and the paleontologocal perspective in evolutionary biology", in Koenemann, S. & Jenner, R.A., Crustacea and Arthropod Relationships, CRC Press, pp. 3–14, ISBN 978-0-8493-3498-6, http://books.google.com/?id=LalmQ4346O0C&dq=Nielsen,+C.+2001+%22Animal+evolution%22+Chelicerata, retrieved 2008-10-15
- Benton, M. (2000), "Stems, nodes, crown clades, and rank-free lists: is Linnaeus dead?", Biological Reviews 75 (4): 633–648, DOI:10.1111/j.1469-185X.2000.tb00055.x, PMID 11117201, http://palaeo.gly.bris.ac.uk/Benton/reprints/2000phylocode.pdf
- Benton, M.J. (2004), Vertebrate Palaeontology (3rd ed.), Oxford: Blackwell Science, ISBN 978-0-632-05637-8
- Carroll, Robert Lynn (1997), Patterns and Processes of Vertebrate Evolution, Cambridge University Press, ISBN 978-0-521-47809-0
- Cracraft, Joel; Donaghue, Michael J., eds. (2004), Assembling the Tree of Life, Oxford, England: Oxford University Press, ISBN 978-0-19-517234-8
- Cuénot, Lucien (1940), "Remarques sur un essai d'arbre généalogique du règne animal", Comptes Rendus de l'Académie des Sciences de Paris 210: 23–27. Available free online at http://gallica.bnf.fr (No direct URL). This is the paper credited by Hennig 1979 for the first use of the term 'clade'.
- Dupuis, Claude (1984), "Willi Hennig's impact on taxonomic thought", Annual Review of Ecology and Systematics 15: 1–24, ISSN 0066-4162.
- Fraix-Burnet, D.; Choler, P.; Douzery, E.J.P.; Verhamme, A. (2006), "Astrocladistics: A Phylogenetic Analysis of Galaxy Evolution II. Formation and Diversification of Galaxies", Journal of Classification 23 (1): 57–78, DOI:10.1007/s00357-006-0004-4
- Freeman, Scott (1998), Evolutionary Analysis, Prentice Hall, ISBN 978-0-13-568023-0
- Gordon, Richard (1999), The Hierarchical Genome and Differentiation Waves, World Scientific, ISBN 978-981-02-2268-0
- Gould, Steven J. (1983), Hen's Teeth and Horse's Toes, New York: Norton, ISBN 978-0-393-01716-8
- Hennig, Willi (1966), Phylogenetic systematics (tr. D. Dwight Davis and Rainer Zangerl), Urbana, IL: Univ. of Illinois Press (reprinted 1979 and 1999), ISBN 0-252-06814-9
- Hennig, Willi (1975), "'Cladistic analysis or cladistic classification': a reply to Ernst Mayr", Systematic Zoology 24 (2): 244–256, DOI:10.2307/2412765, JSTOR 2412765. The paper to which he was responding is reprinted inMayr 1976.
- Hennig, Willi (1999), Phylogenetic systematics (3rd edition of 1966 book), Urbana: University of Illinois Press, ISBN 0-252-06814-9 Translated from manuscript in German eventually published in 1982 (Phylogenetische Systematik, Verlag Paul Parey, Berlin).
- Hugall, Andrew F.; Foster, Ralph; Lee, Michael S. Y. (2007), "Calibration choice, rate smoothing, and the pattern of tetrapod diversification according to the long nuclear gene RAG-1", Systematic Biology 56 (4): 543–563, DOI:10.1080/10635150701477825, http://digital.library.adelaide.edu.au/dspace/bitstream/2440/44140/1/hdl_44140.pdf
- Hull, David L. (1979), "The limits of cladism", Systematic Zoology 28 (4): 416–440, DOI:10.2307/2412558, JSTOR 2412558.
- Hull, David (1988), Science as a Process, University of Chicago Press, ISBN 978-0-226-36051-5
- James, Frances C. & Pourtless IV, John A. (2009), Cladistics and the Origin of Birds: A Review and Two New Analyses, Ornithological Monographs, No. 66, American Ornithologists' Union, ISBN 978-0-943610-85-6, http://www.bio.fsu.edu/James/Ornithological%20Monographs%202009.pdf, retrieved 2010-12-14
- Jerison, Harry J. (2003), "On Theory in Comparative Psychology", in Sternberg, Robert J.; Kaufman, James C., The Evolution of Intelligence, Mahwah, NJ: Lawrence Erlbaum Associates, Inc., ISBN 0-12-385250-1
- Krell, F.-T. & Cranston, P. (2004), "Which side of the tree is more basal?", Systematic Entomology 29 (3): 279–281, DOI:10.1111/j.0307-6970.2004.00262.x
- Letunic, I. & Bork, P. (2007), "Interactive Tree Of Life (iTOL): an online tool for phylogenetic tree display and annotation", Bioinformatics 23 (1): 127–8, DOI:10.1093/bioinformatics/btl529, PMID 17050570
- Lipo, Carl; O'Brien, Michael J.; Collard, Mark et al., eds. (2006), Mapping Our Ancestors: Phylogenetic Approaches in Anthropology and Prehistory, Piscataway: Transaction Publishers, ISBN 978-0-202-30751-0
- Lowe, Andrew (2004), Ecological Genetics: Design, Analysis, and Application, Blackwell Publishing, ISBN 978-1-4051-0033-5
- Maas, Philipp (2010), Jürgen, Hanneder; Maas, Philipp, eds., Computer Aided Stemmatics — The Case of Fifty-Two Text Versions of Carakasasaṃhitā Vimānasthāna 8.67-157, Vienna: Austrian Academy of Sciences, pp. 63-120, http://dx.doi.org/10.1553/wzks2009-2010s63
- Mace, Ruth; Clare, Clare J.; Shennan, Stephen, eds. (2005), The Evolution of Cultural Diversity: A Phylogenetic Approach, Portland: Cavendish Press, ISBN 978-1-84472-099-6
- Mayr, Ernst (1974), "Cladistic analysis or cladistic classification?", Zeitschrift fűr Zoologische Systematik und Evolutionforschung 12: 94–128, http://courses.cit.cornell.edu/jdv55/teaching/systematics/mayr%2074%20-%20cladistic%20analysis%20or%20cladistic%20classification.pdf, retrieved 2010-12-14
- Mayr, Ernst (1976), Evolution and the diversity of life (Selected essays), Cambridge, MA: Harvard University Press, ISBN 0-674-27105-X Reissued 1997 in paperback. Includes a reprint of Mayr's 1974 anti-cladistics paper at pp. 433–476, "Cladistic analysis or cladistic classification." This is the paper to which Hennig 1975 is a response.
- Mayr, Ernst (1978), "Origin and history of some terms in systematic and evolutionary biology", Systematic Zoology 27 (1): 83–88, DOI:10.2307/2412818, JSTOR 2412818.
- Mayr, Ernst (1982), The growth of biological thought: diversity, evolution and inheritance, Cambridge, MA: Harvard University Press, ISBN 0-674-36446-5
- Mayr, E. (1985), "Darwin and the Definition of Phylogeny", Systematic Zoology 34 (1): 97–98, DOI:10.2307/2413350
- Mayr, E & Bock, WJ (2002), "Classifications and other ordering systems", Journal of Zoological Systematics and Evolutionary Research 40 (4): 169–194, DOI:10.1046/j.1439-0469.2002.00211.x
- Metzger, Bruce Manning & Ehrman, Bart D. (2005), The text of the New Testament: its transmission, corruption and restoration (4th ed.), New York: Oxford University Press, ISBN 978-0-19-516667-5
- Mishler, Brent D. (2005), "The logic of the data matrix in phylogenetic analysis", in Albert, Victor, Parsimony, Phylogeny, and Genomics, Oxford University Press, pp. 57–70, ISBN 0-19-929730-4 .
- Oppenheimer, Stephen (2006), The Origins of the British, London: Robinson, ISBN 978-0-7867-1890-0
- Patterson, Colin (1982), "Morphological characters and homology", in Joysey, Kenneth A; Friday, A. E., Problems in Phylogenetic Reconstruction, Systematics Association Special Volume 21, London: Academic Press, ISBN 0-12-391250-4 .
- Patterson, Colin (1988), "Homology in classical and molecular biology", Molecular Biology and Evolution 5 (6): 603–625, PMID 3065587
- Pennisi, E. (2001), "Evolutionary Biology: Preparing the Ground for a Modern 'Tree of Life'", Science 293 (5537): 1979–1980, DOI:10.1126/science.293.5537.1979, PMID 11557858
- Phillips, Ben (2000), Natural History Collections: Cladistics, University of Edinburgh, http://www.nhc.ed.ac.uk/index.php?page=236.273.444, retrieved 4 July 2009
- de Pinna, M.G.G (1991), "Concepts and tests of homology in the cladistic paradigm", Cladistics 7 (4): 367–394, DOI:10.1111/j.1096-0031.1991.tb00045.x
- Prothero, Donald R. (2007), Evolution: What the Fossils Say and Why It Matters, New York: Columbia University Press, ISBN 978-0-231-13962-5
- de Queiroz, K. & Gauthier, J. (1994), "Toward a phylogenetic system of biological nomenclature", Trends in Research in Ecology and Evolution 9 (1): 27–31, DOI:10.1016/0169-5347(94)90231-3, PMID 21236760
- Robinson, Peter M.W. & O’Hara, Robert J. (1996), "Cladistic analysis of an Old Norse manuscript tradition", Research in Humanities Computing 4: 115–137, http://rjohara.net/cv/1996-rhc, retrieved 2010-12-13
- Schuh, Randall T. & Brower, Andrew V.Z. (2009), Biological Systematics: Principles and Applications (2nd ed.), Cornell University Press, ISBN 978-0-8014-4799-0
- Scott-Ram, N. R. (1990), Transformed Cladistics, Taxonomy and Evolution, Cambridge University Press, ISBN 978-0-521-34086-1
- Singh, Gurcharan (2004), Plant Systematics: An Integrated Approach, Enfield, NH: Science Publishers, ISBN 978-1-57808-351-0
- Taylor, Mike (2003), What do terms like monophyletic, paraphyletic and polyphyletic mean?, http://www.miketaylor.org.uk/dino/faq/s-class/phyletic/, retrieved 2010-12-13
- Tudge, Colin (2002), The Variety of Life: A survey and a Celebration of all the Creatures that Have Ever Lived, Oxford: Oxford University Press, ISBN 978-0-19-860426-6
- Weygoldt, P. (February 1998), "Evolution and systematics of the Chelicerata", Experimental and Applied Acarology 22 (2): 63–79, DOI:10.1023/A:1006037525704
- Wheeler, Quentin (2000), Species Concepts and Phylogenetic Theory: A Debate, Columbia University Press, ISBN 978-0-231-10143-1
- Wiley, E.O.; Siegel-Causey, D.; Brooks, D.R. & Funk, V.A. (1991), "Chapter 1 Introduction, terms and concepts", The Compleat Cladist: A Primer of Phylogenetic Procedures, The University of Kansas Museum of Natural History, ISBN 978-0-89338-035-9, http://www.amnh.org/learn/pd/fish_2/pdf/compleat_cladist.pdf, retrieved 2010-12-13
- Williams, P.A. (1992), "Confusion in cladism", Synthese 01: 135–132
This audio file was created from a revision of the "
Cladistics" article dated 2005-04-30, and does not reflect subsequent edits to the article. (
Audio help)
|
|
Relevant fields |
|
|
Basic concepts |
|
|
Inference methods |
|
|
Current topics |
|
|
-morphy |
|
|
-phyly |
|
|
|
|