The E-carrier standards form part of the Plesiochronous Digital Hierarchy (PDH) where groups of E1 circuits may be bundled onto higher capacity E3 links between telephone exchanges or countries. This allows a network operator to provide a private end-to-end E1 circuit between customers in different countries that share single high capacity links in between.
In practice, only E1 and E3 versions are used. Physically E1 is transmitted as 32 timeslots and E3 512 timeslots, but one is used for framing and typically one allocated for signalling call setup and tear down. Unlike Internet data services, E-carrier systems permanently allocate capacity for a voice call for its entire duration. This ensures high call quality because the transmission arrives with the same short delay (latency) and capacity at all times.
E1 circuits are very common in most telephone exchanges and are used to connect to medium and large companies, to remote exchanges and in many cases between exchanges. E3 lines are used between exchanges, operators and/or countries, and have a transmission speed of 34.368 Mbit/s.
==E1==
An E1 link operates over two separate sets of wires, usually twisted pair cable. A nominal 3 volt peak signal is encoded with pulses using a method that avoids long periods without polarity changes. The line data rate is 2.048 Mbit/s (full duplex, i.e. 2.048 Mbit/s downstream and 2.048 Mbit/s upstream) which is split into 32 timeslots, each being allocated 8 bits in turn. Thus each timeslot sends and receives an 8-bit PCM sample, usually encoded according to A-law algorithm, 8000 times per second (8 x 8000 x 32 = 2,048,000). This is ideal for voice telephone calls where the voice is sampled into an 8 bit number at that data rate and reconstructed at the other end. The timeslots are numbered from 0 to 31.
One timeslot (TS0) is reserved for framing purposes, and alternately transmits a fixed pattern. This allows the receiver to lock onto the start of each frame and match up each channel in turn. The standards allow for a full Cyclic Redundancy Check to be performed across all bits transmitted in each frame, to detect if the circuit is losing bits (information), but this is not always used.
One timeslot (TS16) is often reserved for signalling purposes, to control call setup and teardown according to one of several standard telecommunications protocols. This includes Channel Associated Signaling (CAS) where a set of bits is used to replicate opening and closing the circuit (as if picking up the telephone receiver and pulsing digits on a rotary phone), or using tone signalling which is passed through on the voice circuits themselves. More recent systems used Common Channel Signaling (CCS) such as ISDN or Signalling System 7 (SS7) which send short encoded messages with more information about the call including caller ID, type of transmission required etc. ISDN is often used between the local telephone exchange and business premises, whilst SS7 is almost exclusively used between exchanges and operators. In theory, a single SS7 signaling timeslot can control up to 4096 circuits per signalling channel using a 12-bit Channel Identification Code (CIC), thus allowing slightly more efficient use of the overall transmission bandwidth because additional E1 links would use all 31 voice channels. ANSI uses a larger 14-bit CIC and so can accommodate up to 16,384 circuits. In most environments, multiple signalling channels would be used to provide redundancy in case of faults or outages.
Unlike the earlier T-carrier systems developed in North America, all 8 bits of each sample are available for each call. This allows the E1 systems to be used equally well for circuit switch data calls, without risking the loss of any information.
While the original CEPT standard G.703 specifies several options for the physical transmission, almost exclusively HDB3 format is used.
Definition
Link An unidirectional channel residing in one timeslot of a E1 or T1 Line, carrying 64 kbit/s (64'000 bit/s) raw digital data.
Line An unidirectional E1 or T1 physical connection.
Trunk A bidirectional E1 or T1 physical connection.
Note, because bit interleaving is used, it is very difficult to demultiplex low level tributaries directly, requiring equipment to individually demultiplex every single level down to the one that is required.
! Signal | ! Rate |
E0 | 64 kbit/s |
E1 | 2.048 Mbit/s |
E2 | 8.448 Mbit/s |
E3 | 34.368 Mbit/s |
E4 | 139.264 Mbit/s |
E5 | 564.992 Mbit/s |
Category:Telecommunications standards Category:Multiplexing
ar:بريد ناقل cs:E1 es:Portadora-E id:E1 he:E1 (תקן) ja:E回線 pl:E1 (telekomunikacja) pt:E1 ru:E1 (ISDN) uk:E1This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.