In geology, a fault is a planar fracture or discontinuity in a volume of rock, across which there has been significant displacement. Large faults within the Earth's crust result from the action of tectonic forces. Energy release associated with rapid movement on active faults is the cause of most earthquakes, such as occurs on the San Andreas Fault, California.
A fault line is the surface trace of a fault, the line of intersection between the fault plane and the Earth's surface.
Since faults do not usually consist of a single, clean fracture, geologists use the term fault zone when referring to the zone of complex deformation associated with the fault plane.
The two sides of a non-vertical fault are known as the hanging wall and footwall. By definition, the hanging wall occurs above the fault plane and the footwall all occurs below the fault. This terminology comes from mining: when working a tabular ore body, the miner stood with the footwall under his feet and with the hanging wall hanging above him.
The relative motion of rocks on either side of the fault surface controls the origin and behavior of faults, in both an individual small fault and within the greater fault zones which define the tectonic plates.
Because of friction and the rigidity of the rock, the rocks cannot simply glide or flow past each other. Rather, stress builds up in rocks and when it reaches a level that exceeds the strain threshold, the accumulated potential energy is dissipated by the release of strain, which is focused into a plane along which relative motion is accommodated—the fault.
Strain is both accumulative and instantaneous depending on the rheology of the rock; the ductile lower crust and mantle accumulates deformation gradually via shearing, whereas the brittle upper crust reacts by fracture - instantaneous stress release - to cause motion along the fault. A fault in ductile rocks can also release instantaneously when the strain rate is too great. The energy released by instantaneous strain release causes earthquakes, a common phenomenon along transform boundaries.
According to this theory, after a large earthquake, the majority of the stress is released and the frequency of microfracturing is exponentially lower. A related theory, accelerating moment release (AMR), hypothesizes that the seismicity rate accelerates in a well-behaved way prior to large earthquakes, and that it may provide a promising tool for earthquake prediction on the scale of days to years.
AMR is being increasingly used to predict rock failures within mines, and applications are being attempted for the portions of faults within brittle rheological conditions. Researchers observe similar behaviour in the tremors preceding volcanic eruptions.
Slip is defined as the relative movement of geological features present on either side of a fault plane, and is a displacement vector. A fault's sense of slip is defined as the relative motion of the rock on each side of the fault with respect to the other side. In measuring the horizontal or vertical separation, the throw of the fault is the vertical component of the dip separation and the heave of the fault is the horizontal component, as in "throw up and heave out".
The vector of slip can be qualitatively assessed by studying the fault bend folding, i.e., the drag folding of strata on either side of the fault; the direction and magnitude of heave and throw can be measured only by finding common intersection points on either side of the fault. In practice, it is usually only possible to find the slip direction of faults, and an approximation of the heave and throw vector.
# a fault where the relative movement (or slip) on the fault plane is approximately vertical is known as a dip-slip fault # where the slip is approximately horizontal, the fault is known as a transcurrent or strike-slip fault # an oblique-slip fault has non-zero components of both strike and dip slip.
For all naming distinctions, it is the orientation of the net dip and sense of slip of the fault which must be considered, not the present-day orientation, which may have been altered by local or regional folding or tilting.
A reverse fault is the opposite of a normal fault—the hanging wall moves up relative to the footwall. Reverse faults indicate shortening of the crust. The dip of a reverse fault is relatively steep, greater than 45°.
A thrust fault has the same sense of motion as a reverse fault, but with the dip of the fault plane at less than 45°. Thrust faults typically form ramps, flats and fault-bend (hanging wall and foot wall) folds. Thrust faults form nappes and klippen in the large thrust belts.
The fault plane is the plane that represents the fracture surface of a fault. Flat segments of thrust fault planes are known as flats, and inclined sections of the thrust are known as ramps. Typically, thrust faults move within formations by forming flats, and climb up section with ramps.
Fault-bend folds are formed by movement of the hanging wall over a non-planar fault surface and are found associated with both extensional and thrust faults.
Faults may be reactivated at a later time with the movement in the opposite direction to the original movement (fault inversion). A normal fault may therefore become a reverse fault and vice versa.
=== Strike-slip faults ===
The fault surface is usually near vertical and the footwall moves either left or right or laterally with very little vertical motion. Strike-slip faults with left-lateral motion are also known as sinistral faults. Those with right-lateral motion are also known as dextral faults.
A special class of strike-slip faults is the transform fault, where such faults form a plate boundary. These are found related to offsets in spreading centers, such as mid-ocean ridges, and less commonly within continental lithosphere, such as the Alpine Fault, New Zealand. Transform faults are also referred to as conservative plate boundaries, as lithosphere is neither created nor destroyed.
A fault which has a component of dip-slip and a component of strike-slip is termed an oblique-slip fault. Nearly all faults will have some component of both dip-slip and strike-slip, so defining a fault as oblique requires both dip and strike components to be measurable and significant. Some oblique faults occur within transtensional and transpressional regimes, others occur where the direction of extension or shortening changes during the deformation but the earlier formed faults remain active.
The hade angle is defined as the complement of the dip angle; it is the angle between the fault plane and a vertical plane that strikes parallel to the fault.
All faults have a measurable thickness, made up of deformed rock characteristic of the level in the crust where the faulting happened, of the rock types affected by the fault and of the presence and nature of any mineralising fluids. Fault rocks are classified by their textures and the implied mechanism of deformation. A fault that passes through different levels of the lithosphere will have many different types of fault rock developed along its surface. Continued dip-slip displacement tends to juxtapose fault rocks characteristic of different crustal levels, with varying degrees of overprinting. This effect is particularly clear in the case of detachment faults and major thrust faults.
The main types of fault rock include:
The level of a fault's activity can be critical for (1) locating buildings, tanks, and pipelines and (2) assessing the seismic shaking and tsunami hazard to infrastructure and people in the vicinity. In California, for example, new building construction has been prohibited directly on or near faults that have moved within the Holocene Epoch (the last 11,000 years) (Hart and Bryant, 1997). Also, faults that have shown movement during the Holocene plus Pleistocene Epochs (the last 2.6 million years) may receive consideration, especially for critical structures such as power plants, dams, hospitals, and schools. Geologists assess a fault's age by studying soil features seen in shallow excavations and geomorphology seen in aerial photographs. Subsurface clues include shears and their relationships to carbonate nodules, translocated clay, and iron oxide mineralization, in the case of older soil, and lack of such signs in the case of younger soil. Radiocarbon dating of organic material buried next to or over a fault shear is often critical in distinguishing active from inactive faults. From such relationships, paleoseismologists can estimate the sizes of past earthquakes over the past several hundred years, and develop rough projections of future fault activity.
Category:Seismic faults Category:Seismology and earthquake terminology Category:Structural geology Category:Geology terminology
ar:فالق ast:Falla bn:ভূ-চ্যুতি bg:Разлом ca:Falla cs:Zlom da:Forkastningszone de:Verwerfung (Geologie) et:Murrang el:Ρήγμα (γεωλογία) es:Falla eo:Faŭlto eu:Faila fa:گسل fr:Faille gl:Falla ko:단층 hi:भ्रंश (भूविज्ञान) id:Sesar it:Faglia he:העתק ht:Fay (jewoloji) la:Falla lv:Lūzuma zona hu:Törés (geológia) nl:Breuk (geologie) ja:断層 no:Forkastning nn:Forkasting oc:Falha pl:Uskok pt:Falha geológica ru:Разлом si:විභේදන (භූ විද්යාව) simple:Fault (geology) sk:Zlom (geológia) sr:Расед sh:Rasjed su:Sésar fi:Siirros sv:Förkastning th:รอยเลื่อน (ธรณีวิทยา) tr:Fay uk:Розрив (геологія) vi:Đứt gãy (địa chất) zh:斷層This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.