- Order:
- Duration: 1:04
- Published: 07 Nov 2008
- Uploaded: 31 Jul 2011
- Author: oisiaa
The Burt-McCollum sleeve valve, as used by the Scottish company Argyll for its cars, and later adopted by Bristol for its radial aircraft engines, used a single sleeve which rotated around a timing axle set at 90 degrees to the cylinder axle. Mechanically simpler and more rugged, the Burt-McCollum valve had the additional advantage of reducing oil consumption (compared to other sleeve valve designs), while retaining the rational combustion chambers and big, uncluttered, porting area possible in the Knight system.
A small number of designs used a "cuff" sleeve in the cylinder head instead of the cylinder proper, providing a more "classic" layout compared to traditional poppet valve engines. This design also had the advantage of not having the piston within the sleeve, although in practice this appears to have had little practical value. On the downside, this arrangement limited the size of the ports to that of the cylinder head, whereas in-cylinder sleeves could have much larger ports.
Most of these advantages were evaluated and established during the 1920s by Sir Harry Ricardo, possibly the sleeve-valve engine's greatest advocate. He conceded that some of these advantages were significantly eroded as fuels improved up to and during World War II and as sodium-cooled exhaust valves were introduced in high output aircraft engines.
The high oil consumption problem associated with the Knight double sleeve valve was fixed with the Burt-McCollum single sleeve valve, as perfected by Bristol. At top dead center (TDC), the single sleeve valve rotates in relation to the piston. This prevents boundary lubrication problems, as piston ring ridge wear at TDC and bottom dead center (BDC) does not occur. The Hercules overhaul time was rated at 3,000 hr at wide open throttle. An inherent disadvantage may be that the piston in its course partially obscures the ports, thus making it difficult for gases to flow during the crucial overlap between the intake and exhaust valve timing usual in modern engines. The German engineer Max Bentele, after studying a British sleeve valve aero engine (probably a Hercules), complained that the arrangement required more than 100 gearwheels for the engine, too many for his taste.
Knight's design had two cast-iron sleeves per cylinder, one sliding inside the other with the piston inside the inner sleeve. The sleeves were operated by small connected rods actuated by an eccentric shaft. They had ports cut out at their upper ends. The design was remarkably quiet, and the sleeve valves needed little attention. It was, however, more expensive to manufacture due to the precision grinding required on the sleeves' surfaces. It also used more oil at high speeds and was harder to start in cold weather.
Although he was initially unable to sell his Knight Engine in the United States, a long sojourn in England, involving extensive further development and refinement by Daimler supervised by their consultant Dr Frederick Lanchester eventually secured Daimler and several luxury car firms as customers willing to pay his expensive premiums. He first patented the design in England in 1908. As part of the licensing agreement, "Knight" was to be included in the car's name.
Among the companies using Knight's technology were Gabriel Voisin (in his Avions Voisin cars), Daimler (even in their V-12 "Double Six", from 1909–1930s), Panhard (1911–39), Mercedes (1909–24), Willys (as the Willys-Knight, plus the associated Falcon-Knight), Stearns, Mors, Peugeot, and Belgium's Minerva company, some thirty companies in all. Itala also experimented with sleeve valves.
Upon Knight's return to America he was able to get some firms to use his design; here his brand name was "Silent Knight" (1905–1907) — the selling point was that his engines were quieter than those with standard poppet valves. The best known of these were the F.B. Stearns Company of Cleveland, which sold a car named the Stearns-Knight, and the Willys firm which offered a car called the Willys-Knight, which was produced in far greater numbers than any other sleeve-valve car.
A number of sleeve valve aircraft engines were developed following a seminal 1927 research paper from the RAE by Harry Ricardo. This paper outlined the advantages of the sleeve valve, and suggested that poppet valve engines would not be able to offer power outputs much beyond 1500 hp (1,100 kW). Napier and Bristol began the development of sleeve valve engines that would eventually result in two of the most powerful piston engines in the world: the Napier Sabre and Bristol Centaurus.
Potentially the most powerful of all sleeve-valve engines (though it never reached production) was the Rolls-Royce Crecy V-12 (oddly, using a 90 degree V-angle), two-stroke, direct-injected, force-scavenged (turbocharged) aero-engine of 26.1 litres capacity. It achieved a very high specific output, and surprisingly good specific fuel consumption (SFC). In 1945 the single cylinder test-engine (E65) produced the equivalent of 5,000 HP (192 BHP/Litre) when water injected, although the full V12 would probably have been initially type rated at circa . Sir Harry Ricardo, who specified the layout and design goals, felt that a reliable 4,000 HP military rating would be possible. Ricardo was constantly frustrated during the war with Rolls-Royce's (RR) efforts. Hives & RR were very much focused on their Merlin, Griffon, then Eagle and finally Whittle's jets, which had a clearly defined production purpose. Ricardo and Tizard eventually realized that the Crecy would never get the development attention it deserved unless it was specified for installation in a particular aircraft, but by 1945, their "Spitfire on steroids" concept of a rapidly-climbing interceptor powered by the lightweight Crecy engine had become an aircraft without a purpose.
Following World War II the sleeve valve disappeared from use, as the previous problems with sealing and wear on poppet valves had been remedied by the use of better materials, and the inertia problems with the use of large valves were reduced by using several smaller valves instead, giving increased flow area and reduced mass. Up to that point, the single sleeve valve had won every contest against the poppet valve hands down in comparison of power to displacement. The difficulty of nitride hardening, then finish grinding the sleeve valve for truing the circularity, may have been a factor in its lack of commercial application.
Mike Hewland and Keith Duckworth experimented with a single-cylinder sleeve-valve test engine when looking at Cosworth DFV replacements. Hewland claimed to have obtained from a 500 cc single cylinder engine, with a specific fuel consumption of 170 gr/HP/hr -.45 to .39 lb/hp/hr-, the engine being able to work on creosote, with no specific lubrication supply for the sleeve. Hewland reported also that the highest temperature measured in the cylinder head didn't exceed 150°C, sleeve temperatures were around 140°C,T was 270°C in the center of cylinder and 240°C in the edge.
A recent SAE paper deals with a high speed, small displacement sleeve valve engine, calculated, but not experimentally shown, to have a higher SFC than the poppet valve alternative, a non-surprising result, considering the difficulty in obtaining the high intake and exhaust overlap that very fast-running engines require, additional work compares two different side opening intake strategies for sleeve valve engines.
An unusual form of four stroke model engine that uses what is essentially a sleeve-valve format, is the British RCV series of "SP" model engines, which use a rotating cylinder liner driven through a bevel gear at the cylinder liner's "bottom", and even more unusually have the propeller shaft emerging from what would normally be the cylinder's "top", at the extreme front of the engine, achieving a 2:1 gear reduction ratio compared to the vertically oriented crankshaft's rotational speed. The same firm's "CD" series of model engines use a conventional upright single cylinder instead, with the crankshaft used to directly spin the propeller, and also use the rotating cylinder valve. As a parallel with the earlier Charles Knight-designed sleeve-valved automotive powerplants, any RCV sleeve-valved model engine that is run on model glow engine fuel using castor oil as a small percentage (about 2% to 4% content) of the lubricant in the fuel allows the "varnish" created through engine operation to provide a better pneumatic seal between the rotating cylinder valve and the unitized engine cylinder/head castings, initially formed while the engine is being broken-in.
Category:Engine valves Category:Engine valvetrain configurations Category:Sleeve valve engines
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.