Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies

Marco Pavone*

- J. Castillo† (Co-I), J. Hoffman‡ (Co-I), I. Nesnas † (Co-I)
 - * Stanford, Department of Aeronautics and Astronautics [†]NASA JPL, California Institute of Technology [‡]MIT, Department of Aeronautics and Astronautics

March 28, 2012 NASA Innovative Advanced Concepts Program

The objective

Develop a mission architecture that allows the systematic and affordable in-situ exploration of small Solar System bodies

Key idea: minimalistic, internally-actuated mobile robotic platforms

Outline

- Science requirements
- 2 Robotic platform
- 3 Mission architectures & operations: mission to Phobos
- Conclusion

Small bodies & planetary decadal survey

J. Castillo, M. Pavone, I. Nesnas, and J. Hoffman "Expected Science Return of Spatially-Extended In-Situ Exploration at Small Solar System Bodies," in 2012 IEEE Aerospace Conference.

Outline

- Science requirements
- 2 Robotic platform
- Mission architectures & operations: mission to Phobos
- 4 Conclusion

Robotic platform

"Traditional" approaches:

- Wheeled rovers
- Legged rovers

- Spring-actuated hoppers
- Thruster-actuated hoppers

Robotic platform

"Traditional" approaches:

- Wheeled rovers
- Legged rovers

- Spring-actuated hoppers
- Thruster-actuated hoppers

Key philosophy: Exploit low gravity, rather than facing it as a constraint

- Minimalistic platform specifically designed for microgravity (inspired by JAXA's MINERVA mini-lander, which however did not succeed during its deployment):
 - Systematic exploration (all access mobility, versatility and scalability)
 - 3 mobility options: 1) tumbling, 2) hopping, 3) pseudo-orbital flight

Basic concept

Basic concept: Swapping angular momentum

$$\mathbf{H} = \mathbf{I}_{\mathsf{platform}} \, oldsymbol{\omega}_{\mathsf{platform}} + \sum_{i=1}^{3} \, \mathbf{I}_{\mathsf{flywheel},i} \, oldsymbol{\omega}_{\mathsf{flywheel},i}$$

Required torques

Spring-damper model ($g = 0.0001 \, m/s^2$, $m = 1 \, Kg$):

Impulsive model $(g = 0.001 \, m/s^2, m = 1 \, Kg)$:

Maximum speed

Maximum speed is upper bounded by

- Escape velocity
- 2 Intrinsic limitation of performance

$$v_{\text{max}} \leq \frac{2 l \sin(\alpha) \sqrt{\left(m_{\text{rw}} + m_{\text{fw}}\right) g l \sin(\alpha)}}{\sqrt{2\alpha \left(1 - \eta\right) \left[\left(m_{\text{rw}} + m_{\text{fw}}\right) l^2 + l_{\text{rw}}\right]}}$$

FAQ: what about momentum build-up?

With constant torque...

$$\textit{N}_{\rm max} = \frac{2\,\dot{\varphi}_{\rm max}\,\textit{I}_{\rm fw}}{\sqrt{[(\textit{m}_{\rm rw} + \textit{m}_{\rm fw})\textit{I}^2 + \textit{I}_{\rm rw}]}(1/\eta^2 - 1)}\,\frac{1}{\sqrt{2(\textit{m}_{\rm rw} + \textit{m}_{\rm fw})\textit{g}\,\textit{I}(1 - \cos(\alpha))}}$$

...but by exploiting gravity one can avoid momentum build-up:

Prototype and initial experiments

Testbed:

Tumbling

Hopping

Outline

- Science requirements
- 2 Robotic platform
- 3 Mission architectures & operations: mission to Phobos
- 4 Conclusion

Science questions at Phobos

Main questions:

- What is the origin of Phobos materials?
 - Phobos comes from Mars?
 - Phobos is a captured asteroid?
- Water and organics at Phobos?
 - "Blue" spectral unit water-rich?
 - Putative phyllosilicates associated with organics?
- What is the structure of Phobos soil?
 - Degree of maturation of the regolith?
- What is the nature of the surface dynamics?
 - Degree of mobility of the soil?

Possible mission scenario

Delivery:

JPL NEO Surveyor (50Kg payload)

Navigation:

Beyond the scope of Phase I

Deployment:

 Ballistic (3m/s impact) or TAG

Spacecraft operations:

• Stable vantage point at L1

Science payload

Theme	Objectives	Observable	Role	Instrument
	Obtain regolith composition	Elemental	Mothership	GR&ND
Decadal Science: Origins		Mineralogical	Hybrid	XRS
	Evaluate regolith maturity	Microstructure	Hybrid	Microscope
Precursor Science: Soil mechanics/risk	Constrain mechanical properties	Angle of repose	Hybrid	Camera
		Response to impulse	Hybrid	Accelerom.
		Crater morphol- ogy	Mothership	HRSC
	Constrain dust dynamics	Measure dust flux	Mothership	Dust ana- lyzer
Decadal Science:	Topography mapping	Photoclinometry	Mothership	HRSC
	Gravity mapping	Doppler tracking	Mothership	RSS
Precursor Science: risk		Acceleration	Hybrid	Accelerom.
	Assess surface dynamics & electrostatic environment	Dust interaction with spikes	Hybrid	Camera
Decadal Science: Habitability	Distribution of water	Neutron detection	Mothership	GR&ND
Precursor Science: ISRU		Mineralogical	Hybrid	XRS

Power and mass breakdown

	Instrument	Mass (g)	Power (W)
Science Package	Radiation monitor	30	0.1
	XRS	300	4
	Thermocouple	50	1
	Microscope	300	0.1
Operational and science support	Accelerometer/Tiltmeter	66	0.002
	Descent camera (WAC/PanCAM)	100	0.1
Subsystems	Transceiver	230	8
	Avionics (including OBDH)	250	0.25
	Thermal	200	1.5
	Antenna	200	0
	Motors and flywheels	400 (total)	3 (each)
Structural	Solar panels	300	
	Battery	222	
	Structure	1000	
	RHU (optional)	400	
		Total: ~ 4 Kg	Total : ∼ 25 <i>W</i>

Operational modes

- Initial reconnaissance of object
- Deployment of hybrid
- Initial "free roaming" by hybrid
- 4 Command and execute guided rolling/hopping trajectories
 - Day activity (3.5 hours): science, mobility, & battery recharging
 - Night activity (3.5 hours): science & survival
 - Night-day transition: telecom off and short tumbling

Outline

- Science requirements
- 2 Robotic platform
- 3 Mission architectures & operations: mission to Phobos
- 4 Conclusion

Conclusion

Spacecraft/rover hybrids:

- New paradigm for in-situ exploration of small bodies
- Technology to obtain new science at an affordable cost
- Proof of concept successfully demonstrated during NIAC Phase I
- Significant student involvement: R. Allen (SU), R. Kobrick and K. Patel (MIT)

M. Pavone, Stanford Aero/Astro Spacecraft/Rover Hybrids

Future plans

	Task	Phase I	Phase II
Robotic platform	3D motion in non-uniform gravity	0	•
	3D motion planning	0	•
	2D prototype and experiments	•	
	3D prototype and experiments		•
	Mechanical design	0	•
Science objectives	Synergies mothership/hybrids for several targets for new/increased science	0	•
	Flight opportunities		•
Mission architecture	Proximity operations		•
	Deployment	0	•
	Electrostatic and dust effects	0	•
	Architecture with multiple hybrids (e.g., Phobos)		•
	Localization for hybrids	0	•

1. Pavone, Stanford Aero/Astro Spacecraft/Rover Hybrids