Name | Muon |
---|---|
Caption | The Moon's cosmic ray shadow, as seen in secondary muons generated by cosmic rays in the atmosphere, and detected 700 meters below ground, at the Soudan II detector |
Composition | Elementary particle |
Statistics | Fermionic |
Group | Lepton |
Generation | Second |
Interaction | Gravity, Electromagnetic, Weak |
Antiparticle | Antimuon () |
Theorized | — |
Discovered | Carl D. Anderson (1936) |
Symbol | |
Mass | |
Mean lifetime | |
Electric charge | −1 e |
Color charge | None |
Spin |
The muon (; from the Greek letter mu (μ) used to represent it) is an elementary particle similar to the electron, with a unitary negative electric charge and a spin of ½. Together with the electron, the tau, and the three neutrinos, it is classified as a lepton. As is the case with other leptons, the muon is not believed to have any sub-structure at all (i.e., is not thought to be composed of any simpler particles).
The muon is an unstable subatomic particle with a mean lifetime of . This comparatively long decay life time (the second longest known) is due to being mediated by the weak interaction. The only longer lifetime for an unstable subatomic particle is that for the free neutron, a baryon particle composed of quarks, which also decays via the weak force. All muons decay to three particles (an electron plus two neutrinos of different types), but the daughter particles are believed to originate newly in the decay.
Like all elementary particles, the muon has a corresponding antiparticle of opposite charge but equal mass and spin: the antimuon (also called a positive muon). Muons are denoted by and antimuons by . Muons were previously called mu mesons, but are not classified as mesons by modern particle physicists (see History).
Muons have a mass of , which is about 200 times the mass of an electron. Since the muon's interactions are very similar to those of the electron, a muon can be thought of as a much heavier version of the electron. Due to their greater mass, muons are not as sharply accelerated when they encounter electromagnetic fields, and do not emit as much bremsstrahlung radiation. This allows muons of a given energy to penetrate far more deeply into matter than electrons, since the deceleration of electrons and muons is primarily due to energy loss by the bremsstrahlung mechanism. As an example, so-called "secondary muons", generated by cosmic rays hitting the atmosphere, can penetrate to the Earth's surface, and even into deep mines.
Because muons have a very large mass and energy compared with the decay energy of radioactivity, they are never produced by radioactive decay. They are, however, produced in copious amounts in high-energy interactions in normal matter, such as occur during certain particle accelerator experiments with hadrons, and also naturally in cosmic ray interactions with matter. These interactions usually first produce pi mesons, which then most often decay to muons.
As with the case of the other charged leptons, the muon has an associated muon neutrino. Muon neutrinos are denoted by .
It was soon found that the mu meson significantly differed from other mesons in that they did not interact with the nuclear force. Also, the mu meson's decay products included a neutrino and an antineutrino, rather than just one or the other, as was observed with other mesons. Other mesons were eventually understood to be hadrons—that is, particles made of quarks—and thus subject to the nuclear force. In the quark model, a meson is composed of exactly two quarks (a quark and antiquark), unlike baryons, which are composed of three quarks. Mu mesons, however, were found to be fundamental particles (leptons) like electrons, with no quark structure. Thus, mu mesons were not mesons at all (in the new sense and use of the term meson), and so the term mu meson was abandoned, and replaced with the modern term muon.
Another particle (the pion, with which the muon was initially confused) had been predicted by theorist Hideki Yukawa:
"It seems natural to modify the theory of Heisenberg and Fermi in the following way. The transition of a heavy particle from neutron state to proton state is not always accompanied by the emission of light particles. The transition is sometimes taken up by another heavy particle."The existence of the muon was confirmed in 1937 by J. C. Street and E. C. Stevenson's cloud chamber experiment. The discovery of the mu-meson muon as a simple "heavy electron" seemed so incongruous and surprising at the time, that Nobel laureate I. I. Rabi famously quipped, "Who ordered that?"
In the Rossi–Hall experiment (1941), muons were used to observe the time dilation (or alternately, length contraction) predicted by special relativity, for the first time.
On Earth, most naturally occurring muons are created by cosmic rays, which consist mostly of protons, many arriving from deep space at very high energy
When a cosmic ray proton impacts atomic nuclei in the upper atmosphere, pions are created. These decay within a relatively short distance (meters) into muons (their preferred decay product), and neutrinos. The muons from these high energy cosmic rays generally continue in about the same direction as the original proton, at a very high velocity. Although their lifetime without relativistic effects would allow a half-survival distance of only about 0.66 km (660 meters) at most (as seen from Earth) the time dilation effect of special relativity (from the viewpoint of the Earth) allows cosmic ray secondary muons to survive the flight to the Earth's surface, since in the Earth frame, the muons have a longer half life due to their velocity. From the viewpoint (inertial frame) of the muon, on the other hand, it is the length contraction effect of special relativity which allows this penetration, since in the muon frame, its life time is unaffected, but the length contraction causes distances through the atmosphere and Earth to be far shorter than these distances in the Earth rest-frame. Both effects are equally valid ways of explaining the fast muon's unusual survival over distances.
Since muons are unusually penetrative of ordinary matter, like neutrinos, they are also detectable deep underground (700 meters at the Soudan II detector) and underwater, where they form a major part of the natural background ionizing radiation. Like cosmic rays, as noted, this secondary muon radiation is also directional.
The same nuclear reaction described above (i.e. hadron-hadron impacts to produce pion beams, which then quickly decay to muon beams over short distances) is used by particle physicists to produce muon beams, such as the beam used for the muon g − 2 experiment.
The dominant muon decay mode (sometimes called the Michel decay after Louis Michel) is the simplest possible: the muon decays to an electron, an electron-antineutrino, and a muon-neutrino. Antimuons, in mirror fashion, most often decay to the corresponding antiparticles: a positron, an electron-neutrino, and a muon-antineutrino. In formulaic terms, these two decays are:
:.
The mean lifetime of the (positive) muon is . The equality of the muon and anti-muon lifetimes has been established to better than one part in 104.
The tree-level muon decay width is :
where and is the Fermi coupling constant.
The decay distributions of the electron in muon decays have been parameterised using the so-called Michel parameters. The values of these four parameters are predicted unambiguously in the Standard Model of particle physics, thus muon decays represent a good test of the space-time structure of the weak interaction. No deviation from the Standard Model predictions has yet been found.
Certain neutrino-less decay modes are kinematically allowed but forbidden in the Standard Model. Examples forbidden by lepton flavour conservation are : and . Observation of such decay modes would constitute clear evidence for theories beyond the Standard Model. Current experimental upper limits for the branching fractions of such decay modes are in the range 10−11 to 10−12.
A positive muon, when stopped in ordinary matter, can also bind an electron and form an exotic atom known as muonium (Mu) atom, in which the muon acts as the nucleus. The positive muon, in this context, can be considered a pseudo-isotope of hydrogen with one ninth of the mass of the proton. Because the reduced mass of muonium, and hence its Bohr radius, is very close to that of hydrogen, this short-lived "atom" behaves chemically — to a first approximation — like hydrogen, deuterium and tritium.
:
where the first errors are statistical and the second systematic.
The difference between the g-factors of the muon and the electron is due to their difference in mass. Because of the muon's larger mass, contributions to the theoretical calculation of its anomalous magnetic dipole moment from Standard Model weak interactions and from contributions involving hadrons are important at the current level of precision, whereas these effects are not important for the electron. The muon's anomalous magnetic dipole moment is also sensitive to contributions from new physics beyond the Standard Model, such as supersymmetry. For this reason, the muon's anomalous magnetic moment is normally used as a probe for new physics beyond the Standard Model rather than as a test of QED.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.