A clock is an instrument used to indicate, keep, and co-ordinate time. The word clock is derived ultimately (via Dutch, Northern French, and Medieval Latin) from the Celtic words clagan and clocca meaning "bell". A silent instrument missing such a mechanism has traditionally been known as a timepiece. In general usage today a "clock" refers to any device for measuring and displaying the time. Watches and other timepieces that can be carried on one's person are often distinguished from clocks.
The clock is one of the oldest human inventions, meeting the need to consistently measure intervals of time shorter than the natural units: the day; the lunar month; and the year. Devices operating on several different physical processes have been used over the millennia, culminating in the clocks of today.
Candle clocks and sticks of incense that burn down at approximately predictable speeds have also been used to estimate the passing of time. In an hourglass, fine sand pours through a tiny hole at a constant rate and indicates a predetermined passage of an arbitrary period of time.' "' '
Greek astronomer, Andronicus of Cyrrhus, supervised the construction of the Tower of the Winds in Athens in the 1st century B.C.
The Greek and Roman civilizations are credited for initially advancing water clock design to include complex gearing, which was connected to fanciful automata and also resulted in improved accuracy. These advances were passed on through Byzantium and Islamic times, eventually making their way back to Europe. Independently, the Chinese developed their own advanced water clocks(水鐘)in 725 A.D., passing their ideas on to Korea and Japan.
Some water clock designs were developed independently and some knowledge was transferred through the spread of trade. Pre-modern societies do not have the same precise timekeeping requirements that exist in modern industrial societies, where every hour of work or rest is monitored, and work may start or finish at any time regardless of external conditions. Instead, water clocks in ancient societies were used mainly for astrological reasons. These early water clocks were calibrated with a sundial. While never reaching the level of accuracy of a modern timepiece, the water clock was the most accurate and commonly used timekeeping device for millennia, until it was replaced by the more accurate pendulum clock in 17th century Europe.
Islamic civilization is credited with further advancing the accuracy of clocks with elaborate engineering. In 797 (or possibly 801), the Abbasid caliph of Baghdad, Harun al-Rashid, presented Charlemagne with an Asian Elephant named Abul-Abbas together with a "particularly elaborate example" of a water clock.
thumb|right|200px|An elephant clock in a manuscript by Al-Jazari (1206 AD) from The Book of Knowledge of Ingenious Mechanical Devices.In the 13th century, Al-Jazari, an engineer who worked for Artuqid king of Diyar-Bakr, Nasir al-Din, made numerous clocks of all shapes and sizes. The book described 50 mechanical devices in 6 categories, including water clocks. The most reputed clocks included the Elephant, Scribe and Castle clocks, all of which have been successfully reconstructed. As well as telling the time, these grand clocks were symbols of status, grandeur and wealth of the Urtuq State.
The word horologia (from the Greek ὡρα, hour, and λέγειν, to tell) was used to describe all these devices, but the use of this word (still used in several Romance languages) for all timekeepers conceals from us the true nature of the mechanisms. For example, there is a record that in 1176 Sens Cathedral installed a ‘horologe’ but the mechanism used is unknown. According to Jocelin of Brakelond, in 1198 during a fire at the abbey of St Edmundsbury (now Bury St Edmunds), the monks 'ran to the clock' to fetch water, indicating that their water clock had a reservoir large enough to help extinguish the occasional fire.
Outside of Europe, the escapement mechanism had been known and used in medieval China, as the Song Dynasty horologist and engineer Su Song (1020–1101) incorporated it into his astronomical clock-tower of Kaifeng in 1088. However, his astronomical clock and rotating armillary sphere still relied on the use of flowing water (i.e. hydraulics), while European clockworks of the following centuries shed this old habit for a more efficient driving power of weights, in addition to the escapement mechanism.
A mercury clock, described in the Libros del saber, a Spanish work from AD 1277 consisting of translations and paraphrases of Arabic works, is sometimes quoted as evidence for Muslim knowledge of a mechanical clock. The first mercury powered automata clock was invented by Ibn Khalafa al-Muradi
Between 1280 and 1320, there is an increase in the number of references to clocks and horologes in church records, and this probably indicates that a new type of clock mechanism had been devised. Existing clock mechanisms that used water power were being adapted to take their driving power from falling weights. This power was controlled by some form of oscillating mechanism, probably derived from existing bell-ringing or alarm devices. This controlled release of power - the escapement - marks the beginning of the true mechanical clock.
These mechanical clocks were intended for two main purposes: for signalling and notification (e.g. the timing of services and public events), and for modeling the solar system. The former purpose is administrative, the latter arises naturally given the scholarly interest in astronomy, science, astrology, and how these subjects integrated with the religious philosophy of the time. The astrolabe was used both by astronomers and astrologers, and it was natural to apply a clockwork drive to the rotating plate to produce a working model of the solar system.
Simple clocks intended mainly for notification were installed in towers, and did not always require faces or hands. They would have announced the canonical hours or intervals between set times of prayer. Canonical hours varied in length as the times of sunrise and sunset shifted. The more sophisticated astronomical clocks would have had moving dials or hands, and would have shown the time in various time systems, including Italian hours, canonical hours, and time as measured by astronomers at the time. Both styles of clock started acquiring extravagant features such as automata.
In 1283, a large clock was installed at Dunstable Priory; its location above the rood screen suggests that it was not a water clock . In 1292, Canterbury Cathedral installed a 'great horloge'. Over the next 30 years there are brief mentions of clocks at a number of ecclesiastical institutions in England, Italy, and France. In 1322, a new clock was installed in Norwich, an expensive replacement for an earlier clock installed in 1273. This had a large (2 metre) astronomical dial with automata and bells. The costs of the installation included the full-time employment of two clockkeepers for two years .
Wallingford's clock had a large astrolabe-type dial, showing the sun, the moon's age, phase, and node, a star map, and possibly the planets. In addition, it had a wheel of fortune and an indicator of the state of the tide at London Bridge. Bells rang every hour, the number of strokes indicating the time.
Dondi's clock was a seven-sided construction, 1 metre high, with dials showing the time of day, including minutes, the motions of all the known planets, an automatic calendar of fixed and movable feasts, and an eclipse prediction hand rotating once every 18 years.
It is not known how accurate or reliable these clocks would have been. They were probably adjusted manually every day to compensate for errors caused by wear and imprecise manufacture.
Water clocks are sometimes still used today, and can be examined in places such as ancient castles and museums.
The Salisbury Cathedral clock, built in 1386, is considered to be the world's oldest surviving mechanical clock that strikes the hours.
Spring-driven clocks appeared during the 15th century, although they are often erroneously credited to Nuremberg watchmaker Peter Henlein (or Henle, or Hele) around 1511. The earliest existing spring driven clock is the chamber clock given to Peter the Good, Duke of Burgundy, around 1430, now in the Germanisches Nationalmuseum. Spring power presented clockmakers with a new problem: how to keep the clock movement running at a constant rate as the spring ran down. This resulted in the invention of the stackfreed and the fusee in the 15th century, and many other innovations, down to the invention of the modern going barrel in 1760.
Early clock dials did not use minutes and seconds. A clock with a dial indicating minutes was illustrated in a 1475 manuscript by Paulus Almanus, and some 15th-century clocks in Germany indicated minutes and seconds. An early record of a second hand on a clock dates back to about 1560 on a clock now in the Fremersdorf collection. However, this clock could not have been accurate, and the second hand was probably for indicating that the clock was working.
During the 15th and 16th centuries, clockmaking flourished, particularly in the metalworking towns of Nuremberg and Augsburg, and in Blois, France. Some of the more basic table clocks have only one time-keeping hand, with the dial between the hour markers being divided into four equal parts making the clocks readable to the nearer 15 minutes. Other clocks were exhibitions of craftsmanship and skill, incorporating astronomical indicators and musical movements. The cross-beat escapement was invented in 1584 by Jost Bürgi, who also developed the remontoire. Bürgi's clocks were a great improvement in accuracy as they were correct to within a minute a day. These clocks helped the 16th-century astronomer Tycho Brahe to observe astronomical events with much greater precision than before.
A mechanical weight-driven astronomical clock with a verge-and-foliot escapement, a striking train of gears, an alarm, and a representation of the moon's phases was described by the Ottoman engineer Taqi al-Din in his book, The Brightest Stars for the Construction of Mechanical Clocks (Al-Kawākib al-durriyya fī wadh' al-bankāmat al-dawriyya), published in 1556-1559. Similarly to earlier 15th-century European alarm clocks, it was capable of sounding at a specified time, achieved by placing a peg on the dial wheel. At the requested time, the peg activated a ringing device. The clock had three dials which indicated hours, degrees and minutes. He later made an observational clock for the Istanbul observatory of Taqi al-Din (1577–1580), describing it as "a mechanical clock with three dials which show the hours, the minutes, and the seconds." This was an important innovation in 16th-century practical astronomy, as at the start of the century clocks were not accurate enough to be used for astronomical purposes.
The next development in accuracy occurred after 1656 with the invention of the pendulum clock. Galileo had the idea to use a swinging bob to regulate the motion of a time-telling device earlier in the 17th century. Christiaan Huygens, however, is usually credited as the inventor. He determined the mathematical formula that related pendulum length to time (99.38 cm or 39.13 inches for the one second movement) and had the first pendulum-driven clock made. In 1670, the English clockmaker William Clement created the anchor escapement, an improvement over Huygens' crown escapement . Within just one generation, minute hands and then second hands were added.
A major stimulus to improving the accuracy and reliability of clocks was the importance of precise time-keeping for navigation. The position of a ship at sea could be determined with reasonable accuracy if a navigator could refer to a clock that lost or gained less than about 10 seconds per day. This clock could not contain a pendulum, which would be virtually useless on a rocking ship. Many European governments offered a large prize for anyone who could determine longitude accurately; for example, Great Britain offered 20,000 pounds, equivalent to millions of dollars today. The reward was eventually claimed in 1761 by John Harrison, who dedicated his life to improving the accuracy of his clocks. His H5 clock was in error by less than 5 seconds over 10 weeks.
The excitement over the pendulum clock had attracted the attention of designers, resulting in a proliferation of clock forms. Notably, the longcase clock (also known as the grandfather clock) was created to house the pendulum and works. The English clockmaker William Clement is also credited with developing this form in 1670 or 1671. It was also at this time that clock cases began to be made of wood and clock faces to utilize enamel as well as hand-painted ceramics.
On November 17, 1797, Eli Terry received his first patent for a clock. Terry is known as the founder of the American clock-making industry.
Alexander Bain, Scottish clockmaker, patented the electric clock in 1840. The electric clock's mainspring is wound either with an electric motor or with an electro-magnet and armature. In 1841, he first patented the electromagnetic pendulum.
The development of electronics in the 20th century led to clocks with no clockwork parts at all. Time in these cases is measured in several ways, such as by the vibration of a tuning fork, the behaviour of quartz crystals, or the quantum vibrations of atoms. Even mechanical clocks have since come to be largely powered by batteries, removing the need for winding.
Although the methods they use vary, all oscillating clocks, mechanical and digital and atomic, work similarly and can be divided into analogous parts. They consist of an object that repeats the same motion over and over again, an oscillator, with a precisely constant time interval between each repetition, or 'beat'. Attached to the oscillator is a controller device, which sustains the oscillator's motion by replacing the energy it loses to friction, and converts its oscillations into a series of pulses. The pulses are then added up in a chain of some type of counters to express the time in convenient units, usually seconds, minutes, hours, etc. Then finally some kind of indicator displays the result in a human-readable form.
Analog clocks usually indicate time using angles. The most common clock face uses a fixed numbered dial or dials and moving hand or hands. It usually has a circular scale of 12 hours, which can also serve as a scale of 60 minutes, and 60 seconds if the clock has a second hand. Many other styles and designs have been used throughout the years, including dials divided into 6, 8, 10, and 24 hours. The only other widely used clock face today is the 24 hour analog dial, because of the use of 24 hour time in military organizations and timetables. The 10-hour clock was briefly popular during the French Revolution, when the metric system was applied to time measurement, and an Italian 6 hour clock was developed in the 18th century, presumably to save power (a clock or watch striking 24 times uses more power).
Another type of analog clock is the sundial, which tracks the sun continuously, registering the time by the shadow position of its gnomon. Sundials use some or part of the 24 hour analog dial. There also exist clocks which use a digital display despite having an analog mechanism—these are commonly referred to as flip clocks.
Alternative systems have been proposed. For example, the Twelve o'clock indicates the current hour using one of twelve colors, and indicates the minute by showing a proportion of a circular disk, similar to a moon phase.
Digital clocks display a numeric representation of time. Two numeric display formats are commonly used on digital clocks:
Most digital clocks use an LCD, LED, or VFD display; many other display technologies are used as well (cathode ray tubes, nixie tubes, etc.). After a reset, battery change or power failure, digital clocks without a backup battery or capacitor either start counting from 12:00, or stay at 12:00, often with blinking digits indicating that time needs to be set. Some newer clocks will actually reset themselves based on radio or Internet time servers that are tuned to national atomic clocks. Since the advent of digital clocks in the 1960s, the use of analogue clocks has declined significantly.
The purpose of a clock is not always to display the time. It may also be used to control a device according to time, e.g. an alarm clock, a VCR, or a time bomb (see: counter). However, in this context, it is more appropriate to refer to it as a timer or trigger mechanism rather than strictly as a clock.
Computers depend on an accurate internal clock signal to allow synchronized processing. (A few research projects are developing CPUs based on asynchronous circuits.) Some computers also maintain time and date for all manner of operations whether these be for alarms, event initiation, or just to display the time of day. The internal computer clock is generally kept running by a small battery. Many computers will still function even if the internal clock battery is dead, but the computer clock will need to be reset each time the computer is restarted, since once power is lost, time is also lost.
This leads to the following definitions:
The recurrent, periodic process (e.g. a metronome) is an oscillator and typically generates a clock signal. Sometimes that signal alone is (confusingly) called "the clock", but sometimes "the clock" includes the counter, its indicator, and everything else supporting it.
This definition can be further improved by the consideration of successive levels of smaller and smaller error tolerances. While not all physical processes can be surveyed, the definition should be based on the set of physical processes which includes all individual physical processes which are proposed for consideration. Since atoms are so numerous and since, within current measurement tolerances they all beat in a manner such that if one is chosen as periodic then the others are all deemed to be periodic also, it follows that atomic clocks represent ideal clocks to within present measurement tolerances and in relation to all presently known physical processes. However, they are not so designated by fiat. Rather, they are designated as the current ideal clock because they are currently the best instantiation of the definition.
Use of an atomic clock in radio signal producing satellites is fundamental to the operation of GPS (Global Positioning System) navigation devices.
ar:ساعة (آلة) az:Saat be:Гадзіннік be-x-old:Гадзіньнік br:Ur bg:Часовник ca:Rellotge cv:Сехет (хатĕр) cs:Hodiny da:Ur de:Uhr et:Kell el:Ρολόι eml:Arlói es:Reloj eo:Horloĝo eu:Erloju fa:ساعت fr:Horloge ga:Clog gv:Clag (traa) gl:Reloxo gan:鐘 ko:시계 hr:Sat (instrument) id:Jam (alat) is:Klukka it:Orologio he:שעון kn:ಗಡಿಯಾರ ka:საათი kk:Сағат la:Horologium lv:Pulkstenis lb:Auer lt:Laikrodis hu:Óra (eszköz) mk:Часовник ml:ഘടികാരം mr:घड्याळ arz:ساعه (آله) ms:Jam (alat) mwl:Reloijo my:နာရီ nl:Klok (tijd) ja:時計 no:Klokke (ur) nn:Klokke uz:Soat (asbob) ps:ګړیال nds:Klock (Tiet) pl:Zegar (czasomierz) pt:Relógio ro:Ceas qu:Pacha tupuq ru:Часы sco:Knock sq:Ora scn:Rulòggiu simple:Clock sk:Hodiny sl:Ura (naprava) sr:Часовник sh:Sat (predmet) fi:Kello sv:Ur th:นาฬิกา tr:Saat uk:Годинник ur:گھنٹا vi:Đồng hồ yi:זייגער zh-yue:鐘 zh:時鐘
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.