In a second meaning, haplotype is a set of single-nucleotide polymorphisms (SNPs) on a single chromosome of a chromosome pair that are statistically associated. It is thought that these associations, and the identification of a few alleles of a haplotype block, can unambiguously identify all other polymorphic sites in its region. Such information is very valuable for investigating the genetics behind common diseases, and has been investigated in the human species by the International HapMap Project.
Many genetic testing companies use the term 'haplotype' to refer to an individual collection of short tandem repeat (STR) allele mutations within a genetic segment, while using the term 'haplogroup' to refer to the SNP/unique-event polymorphism (UEP) mutations which represents the clade to which a collection of potential haplotypes belong.
! | ! AA | ! AT | ! TT |
! GG | AG AG | AG TG | TG TG |
! GC | AG AC | AG TCorAC TG | TG TC |
! CC | AC AC | AC TC | TC TC |
The only unequivocal method of resolving phase ambiguity is by sequencing. However, it is possible to estimate the probability of a particular haplotype when phase is ambiguous using a sample of individuals.
Given the genotypes for a number of individuals, the haplotypes can be inferred by haplotype resolution or haplotype phasing techniques. These methods work by applying the observation that certain haplotypes are common in certain genomic regions. Therefore, given a set of possible haplotype resolutions, these methods choose those that use fewer different haplotypes overall. The specifics of these methods vary - some are based on combinatorial approaches (e.g., parsimony), whereas others use likelihood functions based on different models and assumptions such as the Hardy-Weinberg principle, the coalescent theory model, or perfect phylogeny. These models are combined with optimization algorithms such as expectation-maximization algorithm (EM), Markov chain Monte Carlo (MCMC), or hidden Markov models (HMM).
Microfluidic whole genome haplotyping is a technique for the physical separation of individual chromosomes from a metaphase cell followed by direct resolution of the haplotype for each allele.
Unlike other chromosomes, Y chromosomes do not come in pairs. Every human male has only one copy of that chromosome. This means that there is no lottery as to which copy to inherit, and also (for most of the chromosome) no shuffling between copies by recombination; so, unlike autosomal haplotypes, there is therefore effectively no randomisation of the Y-chromosome haplotype between generations, and a human male should largely share the same Y chromosome as his father, give or take a few mutations.
In particular, the Y-DNA that is the numbered results of a Y-DNA genealogical DNA test should match, barring mutations. Within genealogical and popular discussion, this is sometimes referred to as the "DNA signature" of a particular male human, or of his paternal bloodline.
The UEP results reflect the inheritance of events it is believed can be assumed to have happened only once in all human history. These can be used to directly identify the individual's Y-DNA haplogroup, his place on the broad family tree of the whole of humanity. Different Y-DNA haplogroups identify genetic populations which are often intricately geographically oriented, reflecting the migrations of current individuals' direct patrilineal ancestors tens of thousands of years ago.
Unlike the UEPs, the Y-STRs mutate much more easily, which gives them much more resolution to distinguish recent genealogy. But it also means that, rather than the population of descendants of a genetic event all sharing the same result, the Y-STR haplotypes are likely to have spread apart, to form a cluster of more or less similar results. Typically, this cluster will have a definite most probable center, the modal haplotype (presumably close to the haplotype of the original founding event), and also a haplotype diversity — the degree to which it has become spread out. The further in the past the defining event occurred, and the more that subsequent population growth occurred early, the greater the haplotype diversity for a particular number of descendants will be. On the other hand, if the haplotype diversity is smaller for a particular number of descendants, this may indicate a more recent common ancestor, or that a population expansion has occurred more recently.
It is important to note that, unlike for UEPs, there is no guarantee that two individuals with a similar Y-STR haplotype will necessarily share a similar ancestry. There is no uniqueness about Y-STR events. Instead, the clusters of Y-STR haplotype results inheriting from different events and different histories all tend to overlap.
Thus, although sometimes a Y-STR haplotype may be directly indicative of a particular Y-DNA haplogroup, it is in most cases a long time since the haplogroups' defining events, so typically the cluster of Y-STR haplotype results associated with descendents of that event has become rather broad, and will tend to significantly overlap the (similarly broad) clusters of Y-STR haplotypes associated with other haplogroups, making it impossible to predict with absolute certainty to which Y-DNA haplogroup a Y-STR haplotype would point. All that can be done from the Y-STRs, if the UEPs are not actually tested, is to predict probabilities for haplogroup ancestry (as this online program does), but not certainties.
A similar scenario exists for surnames. A cluster of similar Y-STR haplotypes may indicate a shared common ancestor, with an identifiable modal haplotype, but only if the cluster is sufficiently distinct from what may have arisen by chance from different individuals historically having adopted the same name independently. This may require the typing of quite an extensive haplotype to establish, which has fuelled DNA testing companies to offer ever-larger sets of markers - 24 then 37 then 67, and perhaps soon even more.
Plausibly establishing relatedness between different surnames data-mined from a database is significantly harder, because now it must be established not that a randomly-selected member of the population is unlikely to have such a close match by accident, but rather that the very nearest member of the population in question, chosen purposely from the population for that very reason, would even under those circumstances be unlikely to match by accident. This is for the foreseeable future likely to be impossible, except in special cases where there is further information to drastically limit the size of that population of candidates under consideration.
HPlus — A software package for imputation and testing of haplotypes in association studies using a modified method that incorporates the expectation-maximization algorithm and a Bayesian method called progressive ligation.
Haploview — Visualisation of linkage disequilibrium, haplotype estimation and haplotype tagging (Homepage).
WHAP — haplotype based association analysis.
Category:Classical genetics Category:Population genetics Category:Genetic genealogy
bg:Хаплотип ca:Haplotip cv:Гаплотĕс cs:Haplotyp de:Haplotyp es:Haplotipo fa:هاپلوتیپ fr:Haplotype ko:하플로타입 it:Aplotipo nl:Haplotype ja:ハプロタイプ pl:Haplotyp pt:Haplótipo ru:Гаплотип sv:HaplotypThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.