Variants of Nim have been played since ancient times. The game is said to have originated in China (it closely resembles the Chinese game of "Jianshizi", or "picking stones"), but the origin is uncertain; the earliest European references to Nim are from the beginning of the 16th century. Its current name was coined by Charles L. Bouton of Harvard University, who also developed the complete theory of the game in 1901, but the origins of the name were never fully explained. The name is probably derived from German nimm meaning "take", or the obsolete English verb nim of the same meaning. It should also be noted that rotating the word NIM by 180 degrees results in WIN (see Ambigram).
Nim is usually played as a misère game, in which the player to take the last object loses. Nim can also be played as a normal play game, which means that the person who makes the last move (i.e., who takes the last object) wins. This is called normal play because most games follow this convention, even though Nim usually does not.
Normal play Nim (or more precisely the system of nimbers) is fundamental to the Sprague-Grundy theorem, which essentially says that in normal play every impartial game is equivalent to a Nim heap that yields the same outcome when played in parallel with other normal play impartial games (see disjunctive sum).
While all normal play impartial games can be assigned a nim value, that is not the case under the misère convention. Only tame games can be played using the same strategy as misère nim.
A version of Nim is played—and has symbolic importance—in the French New Wave film Last Year at Marienbad (1961).
It was probably the first ever electronic computerized game (1952), three engineers from the W.L. Maxon Corporation developed a 50-pound machine which played Nim against a human opponent and regularly won.
Nim is a special case of a Poset Game where the Poset consists of disjoint Chains (the heaps).
The following example game is played between fictional players Alice and Bob who start with heaps of 3, 4 and 5 objects. The winning strategy is for a player to leave always an even total number of 1's, 2's, and 4's. In the example, Alice implements this strategy.
Sizes of heaps Moves A B C 3 4 5 Alice takes 2 from A 1 4 5 Bob takes 3 from C 1 4 2 Alice takes 1 from B 1 3 2 Bob takes 1 from B 1 2 2 Alice takes entire A heap, leaving two 2s. 0 2 2 Bob takes 1 from B 0 1 2 Alice takes 1 from C leaving two 1s. (In misère play she would take 2 from C leaving (0, 1, 0).) 0 1 1 Bob takes 1 from B 0 0 1 Alice takes entire C heap and wins.
The key to the theory of the game is the binary digital sum of the heap sizes, that is, the sum (in binary) neglecting all carries from one digit to another. This operation is also known as "exclusive or" (xor) or "vector addition over GF(2)". Within combinatorial game theory it is usually called the nim-sum, as will be done here. The nim-sum of x and y is written x ⊕ y to distinguish it from the ordinary sum, x + y. An example of the calculation with heaps of size 3, 4, and 5 is as follows:
Binary Decimal 0112 310 Heap A 1002 410 Heap B 1012 510 Heap C --- 0102 210 The nim-sum of heaps A, B, and C, 3 ⊕ 4 ⊕ 5 = 2
An equivalent procedure, which is often easier to perform mentally, is to express the heap sizes as sums of distinct powers of 2, cancel pairs of equal powers, and then add what's left: 3 = 0 + 2 + 1 = 2 1 Heap A 4 = 4 + 0 + 0 = 4 Heap B 5 = 4 + 0 + 1 = 4 1 Heap C --- 2 = 2 What's left after canceling 1s and 4s
In normal play, the winning strategy is to finish every move with a Nim-sum of 0. This is always possible if the Nim-sum is not zero before the move. If the Nim-sum is zero, then the next player will lose if the other player does not make a mistake. To find out which move to make, let X be the Nim-sum of all the heap sizes. Take the Nim-sum of each of the heap sizes with X, and find a heap whose size decreases. The winning strategy is to play in such a heap, reducing that heap to the Nim-sum of its original size with X. In the example above, taking the Nim-sum of the sizes is X = 3 ⊕ 4 ⊕ 5 = 2. The Nim-sums of the heap sizes A=3, B=4, and C=5 with X=2 are : A ⊕ X = 3 ⊕ 2 = 1 [Since (011) ⊕ (010) = 001 ] : B ⊕ X = 4 ⊕ 2 = 6 : C ⊕ X = 5 ⊕ 2 = 7 The only heap that is reduced is heap A, so the winning move is to reduce the size of heap A to 1 (by removing two objects).
As a particular simple case, if there are only two heaps left, the strategy is to reduce the number of objects in the bigger heap to make the heaps equal. After that, no matter what move your opponent makes, you can make the same move on the other heap, guaranteeing that you take the last object.
When played as a misère game, Nim strategy is different only when the normal play move would leave no heap of size 2 or larger. In that case, the correct move is to leave an odd number of heaps of size 1 (in normal play, the correct move would be to leave an even number of such heaps).
In a misère game with heaps of sizes 3, 4 and 5, the strategy would be applied like this:
A B C Nim-sum 3 4 5 0102=210 I take 2 from A, leaving a sum of 000, so I will win. 1 4 5 0002=010 You take 2 from C 1 4 3 1102=610 I take 2 from B 1 2 3 0002=010 You take 1 from C 1 2 2 0012=110 I take 1 from A 0 2 2 0002=010 You take 1 from C 0 2 1 0112=310 The normal play strategy would be to take 1 from B, leaving an even number (2) heaps of size 1. For misère play, I take the entire B heap, to leave an odd number (1) of heaps of size 1. 0 0 1 0012=110 You take 1 from C, and lose.
The previous strategy for a misère game can be easily implemented (for example in Python, below).
Theorem. In a normal Nim game, the player making the first move has a winning strategy if and only if the nim-sum of the sizes of the heaps is nonzero. Otherwise, the second player has a winning strategy.
Proof: Notice that the nim-sum (⊕) obeys the usual associative and commutative laws of addition (+), and also satisfies an additional property, x ⊕ x = 0 (technically speaking, the nonnegative integers under ⊕ form an Abelian group of exponent 2).
Let x1, ..., xn be the sizes of the heaps before a move, and y1, ..., yn the corresponding sizes after a move. Let s = x1 ⊕ ... ⊕ xn and t = y1 ⊕ ... ⊕ yn. If the move was in heap k, we have xi = yi for all i ≠ k, and xk > yk. By the properties of ⊕ mentioned above, we have
t = 0 ⊕ t = s ⊕ s ⊕ t = s ⊕ (x1 ⊕ ... ⊕ xn) ⊕ (y1 ⊕ ... ⊕ yn) = s ⊕ (x1 ⊕ y1) ⊕ ... ⊕ (xn ⊕ yn) = s ⊕ 0 ⊕ ... ⊕ 0 ⊕ (xk ⊕ yk) ⊕ 0 ⊕ ... ⊕ 0 = s ⊕ xk ⊕ yk (*) t = s ⊕ xk ⊕ yk.
The theorem follows by induction on the length of the game from these two lemmas.
Lemma 1. If s = 0, then t ≠ 0 no matter what move is made.
Proof: If there is no possible move, then the lemma is vacuously true (and the first player loses the normal play game by definition). Otherwise, any move in heap k will produce t = xk ⊕ yk from (*). This number is nonzero, since xk ≠ yk.
Lemma 2. If s ≠ 0, it is possible to make a move so that t = 0.
Proof: Let d be the position of the leftmost (most significant) nonzero bit in the binary representation of s, and choose k such that the dth bit of xk is also nonzero. (Such a k must exist, since otherwise the dth bit of s would be 0.) Then letting yk = s ⊕ xk, we claim that yk < xk: all bits to the left of d are the same in xk and yk, bit d decreases from 1 to 0 (decreasing the value by 2d), and any change in the remaining bits will amount to at most 2d−1. The first player can thus make a move by taking xk − yk objects from heap k, then t = s ⊕ xk ⊕ yk (by (*)) = s ⊕ xk ⊕ (s ⊕ xk) = 0.
The modification for misère play is demonstrated by noting that the modification first arises in a position that has only one heap of size 2 or more. Notice that in such a position s ≠ 0, therefore this situation has to arise when it is the turn of the player following the winning strategy. The normal play strategy is for the player to reduce this to size 0 or 1, leaving an even number of heaps with size 1, and the misère strategy is to do the opposite. From that point on, all moves are forced.
Bouton's analysis carries over easily to the general multiple-heap version of this game. The only difference is that as a first step, before computing the Nim-sums, we must reduce the sizes of the heaps modulo k + 1. If this makes all the heaps of size zero (in misère play), the winning move is to take k objects from one of the heaps. In particular, in a play from a single heap of n objects, the second player can win iff : n ≡ 0 (mod k+1) (in normal play), or : n ≡ 1 (mod k+1) (in misère play).
This follows from calculating the nim-sequence of S(1,2,...,k), : from which the strategy above follows by the Sprague–Grundy theorem.
. . . . . . . . . .
three objects be taken in the first move
_ . . . . . . . _ _
then another three
_ . _ _ _ . . . _ _
then one
_ . _ _ _ . . _ _ _
but then three objects cannot be taken out in one move.
Category:Mathematical games Category:Combinatorial game theory Category:Recreational mathematics Category:Articles containing proofs Category:Articles with example Python code
cs:Rozšířená forma#NIM de:Nim-Spiel es:Nim (juego) fa:نیم (بازی) fr:Jeux de Nim it:Nim he:נים (משחק) hu:Nim nl:Nim (spel) ja:ニム no:Nim pl:Nim pt:Nim (jogo) ru:Ним (игра) scn:Nim (jocu) simple:Nim fi:Nim sv:Nim th:นิม zh:尼姆游戏This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.