- Order:
- Duration: 9:58
- Published: 26 Apr 2009
- Uploaded: 20 Jun 2011
- Author: musiccity123
The goal of coal mining is to remove coal from the ground. Coal is valued for its energy content, and since the 1880s is widely used to generate electricity. Steel and cement industries use coal as a fuel for extraction of iron from iron ore and for cement production. In the United States, United Kingdom, and South Africa, a coal mine and its structures are a "colliery". In Australia, "colliery" generally refers to an underground coal mine.
The Industrial Revolution, which began in Britain in the 18th century, and later spread to continental Europe and North America, was based on the availability of coal to power steam engines. International trade expanded exponentially when coal-fed steam engines were built for the railways and steamships. The new mines that grew up in the 19th century depended on men and children to work long hours in often dangerous working conditions.
The oldest continuously worked deep-mine in the United Kingdom is Tower Colliery in South Wales valleys in the heart of the South Wales coalfield. This colliery was developed in 1805, and its miners bought it out at the end of the 20th century, to prevent it from being closed. Tower Colliery was finally closed on 25 January 2008, although production continues at the Aberpergwym drift mine nearby.
Coal was mined in America in the early 18th century, and commercial mining started around 1730 in Midlothian, Virginia.
Coal-cutting machines were invented in the 1880s. Before the invention, coal was mined from underground with a pick and shovel. By 1912 surface mining was conducted with steam shovels designed for coal mining.
Technical and economic feasibility are evaluated based on: regional geologic conditions; overburden characteristics; coal seam continuity, thickness, structure, quality, and depth; strength of materials above and below the seam for roof and floor conditions; topography (especially altitude and slope); climate; land ownership as it affects the availability of land for mining and access; surface drainage patterns; ground water conditions; availability of labor and materials; coal purchaser requirements in terms of tonnage, quality, and destination; and capital investment requirements.
Surface mining and deep underground mining are the two basic methods of mining. The choice of mining method depends primarily on depth of burial, density of the overburden and thickness of the coal seam. Seams relatively close to the surface, at depths less than approximately 180 ft (50 m), are usually surface mined. Coal that occurs at depths of 180 to 300 ft (50 to 100 m) are usually deep mined but, in some cases, surface mining techniques can be used. For example, some western U.S. coal that occur at depths in excess of 200 ft (60 m) are mined by open pit methods, due to thickness of the seam 60–90 feet (20–30 m). Coals occurring below 300 ft (100 m) are usually deep mined. Although there are open pit mining operations working on coal seams up to 1000–1500 feet (300–450 m) below ground level, for instance Tagebau Hambach.
When coal seams are near the surface, it may be economical to extract the coal using open cut (also referred to as open cast, open pit, or strip) mining methods. Open cast coal mining recovers a greater proportion of the coal deposit than underground methods, as more of the coal seams in the strata may be exploited. Large Open Cast mines can cover an area of many square kilometers and use very large pieces of equipment. This equipment can include the following: Draglines which operate by removing the overburden, power shovels, large trucks in which transport overburden and coal, bucket wheel excavators, and conveyors.
In this mining method, explosives are first used in order to break through the surface, or overburden, of the mining area. The overburden is then removed by draglines or by shovel and truck. Once the coal seam is exposed, it is drilled, fractured and thoroughly mined in strips. The coal is then loaded on to large trucks or conveyors for transport to either the coal preparation plant or directly to where it will be used.
Most open cast mines in the United States extract bituminous coal. In Australia and South Africa open cast mining is used for both thermal and metallurgical coals. In New South Wales open casting for steam coal and anthracite is practiced. Surface mining accounts for around 80% of production in Australia, while in the USA it is used for about 67% of production. Globally, about 40% of coal production involves surface mining.
Equipment to be used depends on geologic conditions. For example, to remove overburden that is loose or unconsolidated, a bucket wheel excavator might be the most productive. The life of some area mines may be more than 50 years.
Spoil is placed at the head of a narrow, steep-sided valley or hollow. In preparation for filling this area, vegetation and soil are removed and a rock drain constructed down the middle of the area to be filled, where a natural drainage course previously existed. When the fill is completed, this underdrain will form a continuous water runoff system from the upper end of the valley to the lower end of the fill. Typical head-of-hollow fills are graded and terraced to create permanently stable slopes.
Most coal seams are too deep underground for opencast mining and require underground mining, which method currently accounts for about 60% of world coal production. In 2006, the world production of brown coal and lignite was slightly over 1,000 Mt, with Germany the world’s largest brown coal producer at 194.4 Mt, and China second at 100.6 Mt.
Coal production has grown fastest in Asia, while Europe has declined. The top coal mining nations (figures in brackets are 2009 estimate of total coal production in millions of tons) are:
Most coal production is used in the country of origin, with around 16% of hard coal production being exported.
Global coal production is expected to reach 7,000 Mt/yr in 2030 (Update required, world coal production is already past 7,000 Mt/yr and by 2030 will probably be closer to 13,000 Mt/yr), with China accounting for most of this increase. Steam coal production is projected to reach around 5,200 Mt/yr; coking coal 620 Mt/yr; and brown coal 1,200 Mt/yr.
Coal reserves are available in almost every country worldwide, with recoverable reserves in around 70 countries. At current production levels, proven coal reserves are estimated to last 147 years. However, production levels are by no means level, and are in fact increasing and some estimates are that peak coal could arrive in many countries such as China and America by around 2030.
In the United States, the increase in technology has significantly decreased the mining workforce from 335,000 coal miners working at 7,200 mines fifty years ago to 104,824 miners working in fewer than 2,000 mines today.
However, in lesser developed countries and some developing countries, many miners continue to die annually, either through direct accidents in coal mines or through adverse health consequences from working under poor conditions. China, in particular, has the highest number of coal mining related deaths in the world, with official statistics claiming that 6,027 deaths occurred in 2004. To compare, 28 deaths were reported in the U.S. in the same year. Coal production in China is twice that in the U.S., while the number of coal miners is around 50 times that of the USA, making deaths in coal mines in China 4 times as common per worker (108 times as common per unit output) as in the USA.
In 2006, fatal work injuries among miners in the U.S. doubled from the previous year, totaling 47. These figures can in part be attributed to the Sago Mine disaster. The recent mine accident in Utah's Crandall Canyon Mine, where nine miners were killed and six entombed, speaks to the increase in occupational risks faced by U.S. miners.
Chronic lung diseases, such as pneumoconiosis (black lung) were once common in miners, leading to reduced life expectancy. In some mining countries black lung is still common, with 4,000 new cases of black lung every year in the USA (4% of workers annually) and 10,000 new cases every year in China (0.2% of workers). Rates may be higher than reported in some regions.
Build-ups of a hazardous gas are known as damps, possibly from the German word "Dampf" which means steam or vapor:
Coal mining can result in a number of adverse effects on the environment. Surface mining of coal completely eliminates existing vegetation, destroys the genetic soil profile, displaces or destroys wildlife and habitat, degrades air quality, alters current land uses, and to some extent permanently changes the general topography of the area mined, This often results in a scarred landscape with no scenic value. Rehabilitation or reclamation mitigates some of these concerns and is required by Federal Law, specifically the Surface Mining Control and Reclamation Act of 1977.
Mine tailing dumps produce acid mine drainage which can seep into waterways and aquifers, with consequences on ecological and human health. If underground mine tunnels collapse, this can cause subsidence of land surfaces. During actual mining operations, methane, a known greenhouse gas, may be released into the air. And by the movement, storage, and redistribution of soil, the community of microorganisms and nutrient cycling processes can be disrupted.
Most Chinese mines are deep underground and do not produce the surface disruption typical of strip mines. Although there is some evidence of reclamation of mined land for use as parks, China does not require extensive reclamation and is creating significant acreages of abandoned mined land which is unsuitable for agriculture or other human uses, and inhospitable to indigenous wildlife. Chinese underground mines often experience severe surface subsidence (6–12 meters), negatively impacting farmland because it no longer drains well. China uses some subsidence areas for aquaculture ponds but has more than they need for that purpose. Reclamation of subsided ground is a significant problem in China.
Because most Chinese coal is for domestic consumption and is burned with little or no air pollution control equipment, it contributes greatly to visible smoke and severe air pollution in industrial areas using coal for fuel.
Some of the world's largest coal reserves are located in South America, and an opencast mine at Cerrejón in Colombia is one of the world's largest open pit mines. Output of the mine in 2004 was 24.9 million tons (compared to total global hard coal production of 4,600 million tons). Cerrejón contributed about half of Colombia's coal exports of 52 million tons that year, with Colombia ranked sixth among major coal exporting nations. The company planned to expand production to 32 million tons by 2008.
The company has its own 150 km standard-gauge railroad, connecting the mine to its coal-loading terminal at Puerto Bolívar on the Caribbean coast. There are two 120-car unit trains, each carrying 12,000 tons of coal per trip. The round-trip time for each train, including loading and unloading, is about 12 hours. The coal facilities at the port are capable of loading 4,800 tons per hour on to vessels of up to 175,000 tons of dead weight. The mine, railroad and port operate 24 hours per day. Cerrejón directly employs 4,600 workers, with a further 3,800 employed by contractors. The reserves at Cerrejón are low-sulfur, low-ash, bituminous coal. The coal is mostly used for electric power generation, with some also used in steel manufacture. The surface mineable reserves for the current contract are 330 million tons. However, total proven reserves to a depth of 300 metres are 3,000 million tons.
In a conference with the West Virginia Coal Association former President George W. Bush said that there is no more reliable source of electricity than coal and put coal at center of US energy independence.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.