- Order:
- Duration: 4:55
- Published: 11 Dec 2009
- Uploaded: 30 Aug 2011
- Author: SpaceRip
The first space colony may be on the Moon, or on Mars, or in a space habitat or elsewhere. Ample quantities of all the necessary materials, such as solar energy and water, are available from or on the Moon, Mars, near Earth asteroids or other planetary body.
In 2005 NASA Administrator Michael Griffin identified space colonization as the ultimate goal of current spaceflight programs, saying: }}
Launching materials from Earth is expensive, so bulk materials could come from the Moon, a Near-Earth Object (NEO—an asteroid or comet with an orbit near Earth), Phobos, or Deimos, where gravitational forces are much smaller, there is no atmosphere, and there is no biosphere to damage. Many NEOs contain substantial amounts of metals. Underneath a drier outer crust (much like oil shale), some other NEOs are inactive comets which include billions of tons of water ice and Kerogen hydrocarbons, as well as some nitrogen compounds.
Farther out, Jupiter's Trojan asteroids are thought to be high in water ice and probably other volatiles.
Particularly in the weightless conditions of space, sunlight can be used directly, using large solar ovens made of lightweight metallic foil so as to generate thousands of degrees of heat; or reflected onto crops to enable photosynthesis to proceed.
Large structures would be needed to convert sunlight into significant amounts of electrical power for settlers' use. In highly electrified nations on Earth, electrical consumption can average 1 kilowatt/person (or roughly 10 megawatt-hours per person per year.)
Energy may be an eventual export item for space settlements, perhaps using wireless power transmission e.g. via microwave beams to send power to Earth or the Moon. This method has zero emissions, so would have significant benefits such as elimination of greenhouse gases and nuclear waste. Ground area required per watt would be less than conventional solar panels.
The Moon has nights of two Earth weeks in duration and Mars has night, dust, and is farther from the Sun, reducing solar energy available by a factor of about ½-⅔, and possibly making nuclear power more attractive on these bodies. Alternatively, energy could be transmitted to the lunar and martian surfaces from solar power satellites.
For both solar thermal and nuclear power generation in airless environments, such as the Moon and space, and to a lesser extent the very thin Martian atmosphere, one of the main difficulties is dispersing the inevitable heat generated. This requires fairly large radiator areas.
Transportation using off-Earth resources for propellant in conventional rockets would be expected to massively reduce in-space transportation costs compared to the present day. Propellant launched from the Earth is likely to be prohibitively expensive for space colonization, even with improved space access costs.
Other technologies such as tether propulsion, VASIMR, ion drives, solar thermal rockets, solar sails, magnetic sails, and nuclear thermal propulsion can all potentially help solve the problems of high transport cost once in space.
For lunar materials, one well-studied possibility is to build mass drivers to launch bulk materials to waiting settlements. Alternatively, lunar space elevators might be employed.
Although a fully mechanistic life support system is conceivable, a closed ecological system is generally proposed for life support. The Biosphere 2 project in Arizona has shown that a complex, small, enclosed, man-made biosphere can support eight people for at least a year, although there were many problems. A year or so into the two-year mission oxygen had to be replenished, which strongly suggests that they achieved atmospheric closure.
The relationship between organisms, their habitat and the non-Earth environment can be:
A combination of the above technologies is also possible.
Passive mass shielding of four metric tons per square meter of surface area will reduce radiation dosage to several mSv or less annually, well below the rate of some populated high natural background areas on Earth. This can be leftover material (slag) from processing lunar soil and asteroids into oxygen, metals, and other useful materials. However, it represents a significant obstacle to maneuvering vessels with such massive bulk (mobile spacecraft being particularly likely to rather use proposed less massive active shielding).
See also: von Neumann probe, clanking replicator, Molecular nanotechnology
A much smaller initial population of as little as two female humans should be viable as long as human embryos are available from Earth. Use of a sperm bank from Earth also allows a smaller starting base with negligible inbreeding.
Researchers in conservation biology have tended to adopt the "50/500" rule of thumb initially advanced by Franklin and Soule. This rule says a short-term effective population size (Ne) of 50 is needed to prevent an unacceptable rate of inbreeding, while a long‐term Ne of 500 is required to maintain overall genetic variability. The prescription corresponds to an inbreeding rate of 1% per generation, approximately half the maximum rate tolerated by domestic animal breeders. The value attempts to balance the rate of gain in genetic variation due to mutation with the rate of loss due to genetic drift.
The location of colonization can be on a physical body or free-flying:
The surface of Mars is about the same size as the dry land surface of Earth. The ice in Mars' south polar cap, if spread over the planet, would be a layer 12 meters (39 feet) thick and there is carbon (locked as carbon dioxide in the atmosphere).
Mars may have gone through similar geological and hydrological processes as Earth and therefore contain valuable mineral ores. Equipment is available to extract in situ resources (e.g., water, air) from the Martian ground and atmosphere. There is interest in colonizing Mars in part because life could have existed on Mars at some point in its history, and may even still exist in some parts of the planet.
However, its atmosphere is very thin (averaging 800 Pa or about 0.8% of Earth sea-level atmospheric pressure); so the pressure vessels necessary to support life are very similar to deep space structures. The climate of Mars is colder than Earth's. Its gravity is only around a third that of Earth's; it is unknown whether this is sufficient to support human beings for extended periods (all long-term human experience to date has been at around Earth gravity or one g).
The atmosphere is thin enough, when coupled with Mars' lack of magnetic field, that radiation is more intense on the surface, and protection from solar storms would require radiation shielding.
Mars (2009)]] Terraforming Mars would make life outside of pressure vessels on the surface possible. There is some discussion of it actually being done.
See also: Exploration of Mars, Martian terraforming
There is a suggestion that Mercury could be colonized using the same technology, approach and equipment that is used in colonization of the Moon. Such colonies would almost certainly be restricted to the polar regions due to the extreme daytime temperatures elsewhere on the planet.
The recent discovery of ionized water has astounded scientists. This discovery significantly improves the small planet's prospects as a future colony.
While the surface of Venus is far too hot and features atmospheric pressure at least 90 times that at sea level on Earth, its massive atmosphere offers a possible alternate location for colonization. At an altitude of approximately 50 km, the pressure is reduced to a few atmospheres, and the temperature would be between 40–100 °C, depending on the altitude. This part of the atmosphere is probably within dense clouds which contain some sulfuric acid. Even these may have a certain benefit to colonization, as they present a possible source for the extraction of water.
Paul Birch suggested a method of colonizing the gas giants that did not use buoyancy to support the colony in the atmosphere. He suggested a strip colony consisting of an orbital ring extending completely around the planet. It would rotate at the same speed as the planetary atmosphere at the equator and be held above the atmosphere by rotating mass internal to the strip and connected to the strip by only magnetic force. This rotating mass would be isolated from the strip colony by a vacuum. The extent of the strip colony could be such that the bottom edge is within the atmosphere for communication with the planet and extraction of raw materials. In the vacuum environment outside the top edge of the strip, electromagnetic acceleration to or from orbital velocity would provide communication with interplanetary space. This sort of colony would be especially suitable for Saturn, Uranus and Neptune for which the gravitational attraction at the altitude of the visible atmosphere is near one Earth gravity. A robotic levitated equatorial strip colony at Jupiter could allow the extraction of raw materials from that planet.
The moon's low surface gravity is also a concern (it is unknown whether 1/6g is sufficient to support human habitation for long periods).
The Artemis Project designed a plan to colonize Europa, one of Jupiter's moons. Scientists were to inhabit igloos and drill down into the Europan ice crust, exploring any sub-surface ocean. This plan discusses possible use of "air pockets" for human inhabitation. Europa is considered one of the more habitable bodies in the solar system and so merits investigation as a possible abode for life.
Ganymede is the largest moon in the Solar System. It may be attractive as Ganymede is the only moon with a magnetosphere and so is less irradiated at the surface. The presence of magnetosphere, likely indicates a convecting molten core within Ganymede, which may in turn indicate a rich geologic history for the moon.
NASA performed a study called HOPE (Revolutionary Concepts for Human Outer Planet Exploration) regarding the future exploration of the solar system. The target chosen was Callisto. It could be possible to build a surface base that would produce fuel for further exploration of the solar system.
The three out of four largest moons of Jupiter (Europa, Ganymede and Callisto) have an abundance of volatiles making future colonization possible.
Titan is suggested as a target for colonization, because it is the only moon in our solar system to have a dense atmosphere and is rich in carbon-bearing compounds. Robert Zubrin identified Titan as possessing an abundance of all the elements necessary to support life, making Titan perhaps the most advantageous locale in the outer Solar System for colonization, and saying "In certain ways, Titan is the most hospitable extraterrestrial world within our solar system for human colonization".
Enceladus is a small, icy moon orbiting close to Saturn, notable for its extremely bright surface and the geyser-like plumes of ice and water vapor that erupt from its southern polar region. If Enceladus has liquid water, it joins Mars and Jupiter’s moon Europa as one of the prime places in the solar system to look for extraterrestrial life and possible future settlements.
Other large satellites: Rhea, Iapetus, Dione, Tethys, and Mimas, all have large quantities of volatiles, which can be used to support settlement.
Ceres is a dwarf planet in the main asteroid belt, comprising about one third the mass of the whole belt and being the sixth largest body in the inner Solar System by mass and volume. Being the largest body in the asteroid belt, Ceres could become the main base and transport hub for future asteroid mining infrastructure, allowing mineral resources to be transported further to Mars, the Moon and Earth. See further: Main Belt Asteroids. It may be possible to Paraterraform Ceres, making life easier for the colonists. Given its low gravity and fast rotation, a space elevator would also be practical.
A space habitat would serve as a proving ground for a generation ship which could function as a long-term home for hundreds or thousands of people. Such a space habitat could be isolated from the rest of humanity but near enough to Earth for help. This would test if thousands of humans can survive on their own before sending them beyond the reach of help.
The main disadvantage of orbital colonies is lack of materials. These may be expensively imported from the Earth, or more cheaply from extraterrestrial sources, such as the Moon (which has ample metals, silicon, and oxygen), Near Earth Asteroids, comets, or elsewhere. Other disadvantages of orbital colonies are orbital decay, and atmospheric pollution in the case of Earth.
As of 2009, the International Space Station provides a temporary, yet still non-autonomous, human presence in Low Earth orbit.
Another near-Earth possibility are the five Earth-Moon Lagrange points. Although they would generally also take a few days to reach with current technology, many of these points would have near-continuous solar power capability since their distance from Earth would result in only brief and infrequent eclipses of light from the Sun.
The five Earth-Sun Lagrange points would totally eliminate eclipses, but only and would be reachable in a few days' time. The other three Earth-Sun points would require months to reach.
However, the fact that Lagrange points and tend to collect dust and debris, while - require active station-keeping measures to maintain a stable position, make them somewhat less suitable places for habitation than was originally believed. Additionally, the orbit of - takes them out of the protection of the Earth's magnetosphere for approximately two-thirds of the time, exposing them to the health threat from cosmic rays.
Physicist}}
The main difficulty is the vast distances that have to be covered. This means that a very high speed is needed. Otherwise, the time involved, with most realistic propulsion methods, would be from decades to millennia. Hence an interstellar ship would be much more severely exposed to the hazards found in interplanetary travel, including hard vacuum, radiation, weightlessness, and micrometeoroids.
Current physics states that an object within space-time cannot exceed the speed of light, which seemingly limits any object to the millions of years it would at best take for a craft traveling near the speed of light to reach any remote galaxy. Science fiction frequently employs speculative concepts such as wormholes and hyperspace as more practical means of intergalactic travel to work around this issue. However, some scientists
The Russian schoolmaster and physicist Konstantin Tsiolkovsky foresaw elements of the space community in his book Beyond Planet Earth written about 1900. Tsiolkovsky had his space travelers building greenhouses and raising crops in space. Tsiolkovsky believed that going into space would help perfect human beings, leading to immortality and peace.
Others have also written about space colonies as Lasswitz in 1897 and Bernal, Oberth, Von Pirquet and Noordung in the 1920s. Wernher von Braun contributed his ideas in a 1952 Colliers article. In the 1950s and 1960s, Dandridge M. Cole published his ideas.
Another seminal book on the subject was the book The High Frontier: Human Colonies in Space by Gerard K. O'Neill in 1977 which was followed the same year by Colonies in Space by T. A. Heppenheimer.
M. Dyson wrote Home on the Moon; Living on a Space Frontier in 2003; Peter Eckart wrote Lunar Base Handbook in 2006 and then Harrison Schmitt's Return to the Moon written in 2007.
In 2001, the space news website Space.com asked Freeman Dyson, J. Richard Gott and Sid Goldstein for reasons why some humans should live in space. Their answers were:
Nick Bostrom argued that from a utilitarian perspective space colonization should be a chief goal as it would enable a very large population living for a very long period of time (possibly billions of years) which would produce an enormous amount of utility (or happiness). He claims that it is more important to reduce existential risks to increase the probability of eventual colonization rather than to accelerate technological development so that space colonization could happen sooner.
Louis J. Halle, formerly of the United States Department of State, wrote in Foreign Affairs (Summer 1980) that the colonization of space will protect humanity in the event of global nuclear warfare.
The scientist Paul Davies also supports the view that if a planetary catastrophe threatens the survival of the human species on Earth, a self-sufficient colony could "reverse-colonize" the Earth and restore human civilization.
The author and journalist William E. Burrows and the biochemist Robert Shapiro proposed a private project, the Alliance to Rescue Civilization, with the goal of establishing an off-Earth backup of human civilization.
The fundamental problem of public things, needed for survival, such as space programs, is the free rider problem. Convincing the public to fund such programs would require additional self-interest arguments: If the objective of space colonization is to provide a "backup" in case everyone on Earth is killed, then why should someone on Earth pay for something that is only useful after they are dead? This assumes that space colonization is not widely acknowledged as a sufficiently valuable social goal (see Space and survival).
Other objections include concern about creating a culture in which humans are no longer seen as human, but rather as material assets. The issues of human dignity, morality, philosophy, culture, bioethics, and the threat of megalomaniac leaders in these new "societies" would all have to be addressed in order for space colonization to meet the psychological and social needs of people living in isolated colonies or generation ships.
As an alternative or addendum for the future of the human race, many science fiction writers have focused on the realm of the 'inner-space', that is the computer aided exploration of the human mind and human consciousness.
Furthermore, even if humanity manages to avoid devastating Earth through war, pestilence, pollution, global cooling, global warming, and even cometary impacts, the Earth will ultimately become uninhabitable by the heating from the Sun as it ages. If humanity has not made permanent habitations in space by the time any one of these incidents occurs, it may very well go extinct.
Because current space launch costs are so high (on the order of $4,000 to $40,000 / kg launched into orbit) any serious plan to develop space infrastructure at a reasonable cost must include developing the ability of that infrastructure to manufacture most or all of its requirements plus those for permanent human habitation in space. Therefore, the initial investments must be made in the development of the initial capacity to provide these necessities: Materials, Energy, Transportation, Communication, Life support, Radiation protection, Self-replication, and Population.
Once the needs of the permanent settlements have been met, any additional production capacity could be use to either extend that initial infrastructure (a concept commonly called "bootstrapping") or traded back to Earth in payment of the initial investment or in exchange for goods more easily manufactured on the Earth.
Although some items of the infrastructure requirements above can already be easily produced on the Earth and would therefore not be very valuable as trade items (oxygen, water, base metal ores, silicates, etc.), other high value items are more abundant, more easily produced, of higher quality, or can only be produced in space. These would provide (over the long-term) a very high return on the initial investment in space infrastructure.
Some of these high trade value goods include precious metals, gem stones, power, solar cells, ball bearings, the very long period required for the expected return on those investments (estimated to be 50 years or more by some), and because it has never been done before - the high-risk nature of the investment.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.