Animals are a major group of multicellular, eukaryotic organisms of the kingdom Animalia or Metazoa. Their body plan eventually becomes fixed as they develop, although some undergo a process of metamorphosis later on in their life. Most animals are motile, meaning they can move spontaneously and independently. All animals are also heterotrophs, meaning they must ingest other organisms or their products for sustenance.
Most known animal phyla appeared in the fossil record as marine species during the Cambrian explosion, about 542 million years ago.
All animals have eukaryotic cells, surrounded by a characteristic extracellular matrix composed of collagen and elastic glycoproteins. This may be calcified to form structures like shells, bones, and spicules. During development, it forms a relatively flexible framework upon which cells can move about and be reorganized, making complex structures possible. In contrast, other multicellular organisms, like plants and fungi, have cells held in place by cell walls, and so develop by progressive growth. Also, unique to animal cells are the following intercellular junctions: tight junctions, gap junctions, and desmosomes.
Nearly all animals undergo some form of sexual reproduction. They have a few specialized reproductive cells, which undergo meiosis to produce smaller, motile spermatozoa or larger, non-motile ova. These fuse to form zygotes, which develop into new individuals.
Many animals are also capable of asexual reproduction. This may take place through parthenogenesis, where fertile eggs are produced without mating, budding, or fragmentation.A zygote initially develops into a hollow sphere, called a blastula, which undergoes rearrangement and differentiation. In sponges, blastula larvae swim to a new location and develop into a new sponge. In most other groups, the blastula undergoes more complicated rearrangement. It first invaginates to form a gastrula with a digestive chamber, and two separate germ layers — an external ectoderm and an internal endoderm. In most cases, a mesoderm also develops between them. These germ layers then differentiate to form tissues and organs.
All animals are heterotrophs, meaning that they feed directly or indirectly on other living things. They are often further subdivided into groups such as carnivores, herbivores, omnivores, and parasites.
Predation is a biological interaction where a predator (a heterotroph that is hunting) feeds on its prey (the organism that is attacked). Predators may or may not kill their prey prior to feeding on them, but the act of predation always results in the death of the prey. The other main category of consumption is detritivory, the consumption of dead organic matter. It can at times be difficult to separate the two feeding behaviours, for example, where parasitic species prey on a host organism and then lay their eggs on it for their offspring to feed on its decaying corpse. Selective pressures imposed on one another has led to an evolutionary arms race between prey and predator, resulting in various antipredator adaptations.
Most animals feed indirectly from the energy of sunlight. Plants use this energy to convert sunlight into simple sugars using a process known as photosynthesis. Starting with the molecules carbon dioxide (CO2) and water (H2O), photosynthesis converts the energy of sunlight into chemical energy stored in the bonds of glucose (C6H12O6) and releases oxygen (O2). These sugars are then used as the building blocks which allow the plant to grow. When animals eat these plants (or eat other animals which have eaten plants), the sugars produced by the plant are used by the animal. They are either used directly to help the animal grow, or broken down, releasing stored solar energy, and giving the animal the energy required for motion. This process is known as glycolysis.
Animals living close to hydrothermal vents and cold seeps on the ocean floor are not dependent on the energy of sunlight. Instead chemosynthetic archaea and bacteria form the base of the food chain.
The first fossils that might represent animals appear in the Trezona Formation at Trezona Bore, West Central Flinders, South Australia. These fossils are interpreted as being early sponges. They were found in 665-million-year-old rock.
The next oldest possible animal fossils are found towards the end of the Precambrian, around 610 million years ago, and are known as the Ediacaran or Vendian biota. These are difficult to relate to later fossils, however. Some may represent precursors of modern phyla, but they may be separate groups, and it is possible they are not really animals at all.
Aside from them, most known animal phyla make a more or less simultaneous appearance during the Cambrian period, about 542 million years ago. It is still disputed whether this event, called the Cambrian explosion, represents a rapid divergence between different groups or a change in conditions that made fossilization possible.
Some paleontologists suggest that animals appeared much earlier than the Cambrian explosion, possibly as early as 1 billion years ago. Trace fossils such as tracks and burrows found in the Tonian era indicate the presence of triploblastic worms, like metazoans, roughly as large (about 5 mm wide) and complex as earthworms. During the beginning of the Tonian period around 1 billion years ago, there was a decrease in Stromatolite diversity, which may indicate the appearance of grazing animals, since stromatolite diversity increased when grazing animals went extinct at the End Permian and End Ordovician extinction events, and decreased shortly after the grazer populations recovered. However the discovery that tracks very similar to these early trace fossils are produced today by the giant single-celled protist Gromia sphaerica casts doubt on their interpretation as evidence of early animal evolution.
Among the other phyla, the Ctenophora and the Cnidaria, which includes sea anemones, corals, and jellyfish, are radially symmetric and have digestive chambers with a single opening, which serves as both the mouth and the anus. Both have distinct tissues, but they are not organized into organs. There are only two main germ layers, the ectoderm and endoderm, with only scattered cells between them. As such, these animals are sometimes called diploblastic. The tiny placozoans are similar, but they do not have a permanent digestive chamber.
The remaining animals form a monophyletic group called the Bilateria. For the most part, they are bilaterally symmetric, and often have a specialized head with feeding and sensory organs. The body is triploblastic, i.e. all three germ layers are well-developed, and tissues form distinct organs. The digestive chamber has two openings, a mouth and an anus, and there is also an internal body cavity called a coelom or pseudocoelom. There are exceptions to each of these characteristics, however — for instance adult echinoderms are radially symmetric, and certain parasitic worms have extremely simplified body structures.
Genetic studies have considerably changed our understanding of the relationships within the Bilateria. Most appear to belong to two major lineages: the deuterostomes and the protostomes, the latter of which includes the Ecdysozoa, Platyzoa, and Lophotrochozoa. In addition, there are a few small groups of bilaterians with relatively similar structure that appear to have diverged before these major groups. These include the Acoelomorpha, Rhombozoa, and Orthonectida. The Myxozoa, single-celled parasites that were originally considered Protozoa, are now believed to have developed from the Medusozoa as well.
All this suggests the deuterostomes and protostomes are separate, monophyletic lineages. The main phyla of deuterostomes are the Echinodermata and Chordata. The former are radially symmetric and exclusively marine, such as starfish, sea urchins, and sea cucumbers. The latter are dominated by the vertebrates, animals with backbones. These include fish, amphibians, reptiles, birds, and mammals.
In addition to these, the deuterostomes also include the Hemichordata, or acorn worms. Although they are not especially prominent today, the important fossil graptolites may belong to this group.
The Chaetognatha or arrow worms may also be deuterostomes, but more recent studies suggest protostome affinities.
The ecdysozoans also include the Nematoda or roundworms, perhaps the second largest animal phylum. Roundworms are typically microscopic, and occur in nearly every environment where there is water. A number are important parasites. Smaller phyla related to them are the Nematomorpha or horsehair worms, and the Kinorhyncha, Priapulida, and Loricifera. These groups have a reduced coelom, called a pseudocoelom.
The remaining two groups of protostomes are sometimes grouped together as the Spiralia, since in both embryos develop with spiral cleavage.
The other platyzoan phyla are mostly microscopic and pseudocoelomate. The most prominent are the Rotifera or rotifers, which are common in aqueous environments. They also include the Acanthocephala or spiny-headed worms, the Gnathostomulida, Micrognathozoa, and possibly the Cycliophora. These groups share the presence of complex jaws, from which they are called the Gnathifera.
The Lophotrochozoa also include the Nemertea or ribbon worms, the Sipuncula, and several phyla that have a ring of ciliated tentacles around the mouth, called a lophophore. These were traditionally grouped together as the lophophorates. but it now appears that the lophophorate group may be paraphyletic, with some closer to the nemerteans and some to the molluscs and annelids. They include the Brachiopoda or lamp shells, which are prominent in the fossil record, the Entoprocta, the Phoronida, and possibly the Bryozoa or moss animals.
An analysis of the homoscleromorph sponge Oscarella carmela also suggests that the last common ancestor of sponges and the eumetazoan animals was more complex than previously assumed.
Other model organisms belonging to the animal kingdom include the mouse (Mus musculus) and zebrafish (Danio rerio).
In Linnaeus's original scheme, the animals were one of three kingdoms, divided into the classes of Vermes, Insecta, Pisces, Amphibia, Aves, and Mammalia. Since then the last four have all been subsumed into a single phylum, the Chordata, whereas the various other forms have been separated out. The above lists represent our current understanding of the group, though there is some variation from source to source.
ace:Binatang af:Dier als:Tiere ar:حيوان an:Animalia frp:Animâl ast:Animal gn:Mymba ay:Uywa az:Heyvanlar bm:Bagan bn:প্রাণী zh-min-nan:Tōng-bu̍t map-bms:Kewan ba:Хайуандар be:Жывёлы be-x-old:Жывёлы bi:Animol bar:Viecha bs:Životinje br:Loen bg:Животни bxr:Амитан ca:Animal cv:Чĕр чун ceb:Mananap cs:Živočichové sn:Mhuka tum:Vinyama cy:Anifail da:Dyr pdc:Gedier de:Tier nv:Naaldeehii et:Loomad el:Ζώο myv:Ракшат es:Animalia eo:Besto ext:Animalia eu:Animalia fa:جانوران hif:Jaanwar fo:Dýr fr:Animal fy:Dier ga:Ainmhí gv:Baagh gd:Beathach gl:Animalia gan:動物 gu:પ્રાણી ko:동물 ha:Dabba hi:प्राणी hr:Životinje io:Animalo id:Hewan ia:Animal iu:ᓂᕐᔪᑦ/nirjut ik:Niġrun zu:Isilwane is:Dýr it:Animalia he:בעלי חיים jv:Sato kéwan kn:ಪ್ರಾಣಿ pam:Animal ka:ცხოველები ks:पशु kk:Жануарлар kw:Enyval rw:Inyamaswa ky:Жаныбарлар sw:Mnyama ht:Zannimo ku:Ajal lbe:ХӀайван ltg:Dzeivinīki la:Animalia lv:Dzīvnieki lb:Déiereräich lt:Gyvūnai lij:Animalia li:Diere ln:Nyama jbo:danlu lmo:Bestia hu:Állatok mk:Животно mg:Biby ml:ജന്തു mt:Annimal mr:प्राणी mzn:حیوون ms:Haiwan mwl:Animal mn:Амьтан my:တိရစ္ဆာန် nah:Yōlcatl fj:Manumanu nl:Dierenrijk cr:ᐱᓯᐢᑭᐤ ne:जनावर ja:動物 nap:Animali frr:Diarten no:Dyr nn:Dyr nrm:Animâ nov:Animalia oc:Animalia mhr:Янлык om:Binensotta pnb:جاندار koi:Пода nds:Beester pl:Zwierzęta pt:Animalia ksh:Dier ro:Regnul Animalia qu:Uywa rue:Жывы творы ru:Животные sah:Харамай sa:पशुः sco:Ainimal sq:Kafsha scn:Armali si:සතුන් simple:Animal sk:Živočíchy sl:Živali so:Xayawaan srn:Meti sr:Животиње sh:Životinje su:Sato fi:Eläinkunta sv:Djur tl:Hayop ta:விலங்கு roa-tara:Regnum Animalia tt:Хайваннар te:జంతువు th:สัตว์ ti:እንስሳ tg:Ҳайвон to:Monumanu chr:ᎦᏂᏝᎢ chy:Hova ve:Phukha tr:Hayvanlar uk:Тварини ur:جانور ug:ھايۋانات vi:Động vật fiu-vro:Eläjäq wa:Biesse zh-classical:動物 vls:Bêesten (ryk) war:Hayop wo:Dundat yi yi:בעלי חיים yo:Ẹranko zh-yue:動物 diq:Heywani zea:Beêsten bat-smg:Gīvūnā zh:动物
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.