- Order:
- Duration: 9:54
- Published: 03 Oct 2007
- Uploaded: 07 Aug 2011
- Author: dignan00
- http://wn.com/UP_SYNDROME__famous_Netflix_movie_Down_Syndrome_policeman_PART_1_OF_2_Down's
- Email this video
- Sms this video
Name | Down syndrome |
---|---|
Icd10 | |
Icd9 | |
Caption | Boy with Down syndrome assembling a bookcase |
Omim | 190685 |
Medlineplus | 000997 |
Emedicinesubj | ped |
Emedicinetopic | 615 |
Diseasesdb | 3898 |
Meshid | D004314 |
Down syndrome, or Down's syndrome (primarily in the United Kingdom), trisomy 21, is a chromosomal condition caused by the presence of all or part of an extra 21st chromosome. It is named after John Langdon Down, the British physician who described the syndrome in 1866. The condition was identified as a chromosome 21 trisomy by Jérôme Lejeune in 1959. Down syndrome in a fetus can be identified with amniocentesis during pregnancy, or in a baby at birth.
Down syndrome is a chromosomal condition characterized by the presence of an extra copy of genetic material on the 21st chromosome, either in whole (trisomy 21) or part (such as due to translocations). The effects and extent of the extra copy vary greatly among people, depending on genetic history, and pure chance. The incidence of Down syndrome is estimated at 1 per 733 births, although it is statistically more common with older parents (both mothers and fathers) due to increased mutagenic exposures upon some older parents' reproductive cells. Other factors may also play a role. Down syndrome occurs in all human populations, and analogous effects have been found in other species such as chimpanzees and mice.
Often Down syndrome is associated with some impairment of cognitive ability and physical growth, and a particular set of facial characteristics. Individuals with Down syndrome tend to have a lower-than-average cognitive ability, often ranging from mild to moderate disabilities. Many children with Down Syndrome who have received family support, enrichment therapies, and tutoring have been known to graduate from high school and college, and enjoy employment in the work force. The average IQ of children with Down syndrome is around 50, compared to normal children with an IQ of 100. A small number have a severe to high degree of intellectual disability.
Some of the physical features that are popularly ascribed to Down syndrome may also appear in people with a standard set of chromosomes, including microgenia (an abnormally small chin),
Down syndrome can result from several different genetic mechanisms. This results in a wide variability in individual due to complex gene and environment interactions. Prior to birth, it is not possible to predict the symptoms that an individual with Down syndrome will develop.
Dr. Weihs notes the mental qualities of people with Down syndrome to be "unsexual," "playful," "affectionate," "mischievous" and "imitative". Fine motor skills are delayed and often lag behind gross motor skills and can interfere with cognitive development. Effects of the condition on the development of gross motor skills are quite variable. Some children will begin walking at around 2 years of age, while others will not walk until age 4. Physical therapy, and/or participation in a program of adapted physical education (APE), may promote enhanced development of gross motor skills in Down syndrome children.
However, more recent studies show that hearing impairment and otological problems are still found in 38-90% of children with Down syndrome compared to 2.5% for normal children.
The elevated occurrence of hearing loss for individuals with Down is not surprising. Every component in the auditory system is potentially adversely affected by Down syndrome. Problems may include:
Otitis media with effusion is the most common cause of hearing loss in Down children, the infections start at birth and continue throughout the children’s lives. The ear infections are mainly associated with Eustachian tube dysfunction due to alterations in the skull base. However, excessive accumulation of wax can also cause obstruction of the outer ear canal as it is often narrowed in children with Down syndrome. Middle ear problems account for 83% of hearing loss in children with Down syndrome. The degree of hearing loss varies but even a mild degree can have major consequences on speech perception, language acquisition, development and academic achievement if not detected in time and corrected.
Early intervention to treat the hearing loss and adapted education is useful to facilitate the development of children with Down syndrome, especially during the preschool period. For adults, social independence depends largely on the ability to complete tasks without assistance, the willingness to separate emotionally from parents and access to personal recreational activities. Given this background it is always important to rule out hearing loss as a contributing factor in social and mental deterioration.
Other serious illnesses include immune deficiencies.
Amniocentesis and CVS are considered invasive procedures, in that they involve inserting instruments into the uterus, and therefore carry a small risk of causing fetal injury or miscarriage. The risks of miscarriage for CVS and amniocentesis are often quoted as 1% and 0.5% respectively. There are several common non-invasive screens that can indicate a fetus with Down syndrome. These are normally performed in the late first trimester or early second trimester. Due to the nature of screens, each has a significant chance of a false positive, suggesting a fetus with Down syndrome when, in fact, the fetus does not have this genetic condition. Screen positives must be verified before a Down syndrome diagnosis is made. Common screening procedures for Down syndrome are given in Table 1.
Even with the best non-invasive screens, the detection rate is 90–95% and the rate of false positive is 2–5%. Inaccuracies can be caused by undetected multiple fetuses (very rare with the ultrasound tests), incorrect date of pregnancy, or normal variation in the proteins.
Confirmation of screen positive is normally accomplished with amniocentesis or chorionic villus sampling (CVS). Amniocentesis is an invasive procedure and involves taking amniotic fluid from the amniotic sac and identifying fetal cells. The lab work can take several weeks but will detect over 99.8% of all numerical chromosomal problems with a very low false positive rate.
Some physicians and ethicists are concerned about the ethical ramifications of the high abortion rate for this condition. Conservative commentator George Will called it "eugenics by abortion". British peer Lord Rix stated that "alas, the birth of a child with Down's syndrome is still considered by many to be an utter tragedy" and that the "ghost of the biologist Sir Francis Galton, who founded the eugenics movement in 1885, still stalks the corridors of many a teaching hospital". Doctor David Mortimer has argued in Ethics & Medicine that "Down's syndrome infants have long been disparaged by some doctors and government bean counters." Some members of the disability rights movement "believe that public support for prenatal diagnosis and abortion based on disability contravenes the movement's basic philosophy and goals." Peter Singer argued that "neither haemophilia nor Down's syndrome is so crippling as to make life not worth living from the inner perspective of the person with the condition. To abort a fetus with one of these disabilities, intending to have another child who will not be disabled, is to treat fetuses as interchangeable or replaceable. If the mother has previously decided to have a certain number of children, say two, then what she is doing, in effect, is rejecting one potential child in favour of another. She could, in defence of her actions, say: the loss of life of the aborted fetus is outweighed by the gain of a better life for the normal child who will be conceived only if the disabled one dies."
At birth, an ultrasound of the heart (echocardiogram) should be done immediately in order to identify congenital heart disease (this should be carried out by someone with experience in pediatric cardiology). A complete blood count should be done in order to identify pre-existing leukemia. A hearing test using brainstem auditory evoked responses (BAERS) testing should be performed and any hearing deficits further characterized. The thyroid function should also be tested. Early Childhood Intervention should be involved from birth to help coordinate and plan effective strategies for learning and development.
The American Academy of Pediatrics, among other health organizations, has issued a series of recommendations for screening individuals with Down Syndrome for particular diseases. These guidelines enable health care providers to identify and prevent important aspects of DS. All other typical newborn, childhood, and adult screening and vaccination programs should also be performed.
Individuals with Down syndrome differ considerably in their language and communication skills. It is routine to screen for middle ear problems and hearing loss; low gain hearing aids or other amplification devices can be useful for language learning. Early communication intervention fosters linguistic skills. Language assessments can help profile strengths and weaknesses; for example, it is common for receptive language skills to exceed expressive skills. Individualized speech therapy can target specific speech errors, increase speech intelligibility, and in some cases encourage advanced language and literacy. Augmentative and alternative communication (AAC) methods, such as pointing, body language, objects, or graphics are often used to aid communication. Relatively little research has focused on the effectiveness of communications intervention strategies.
In education, mainstreaming of children with Down syndrome is becoming less controversial in many countries. For example, there is a presumption of mainstream in many parts of the UK. Mainstreaming is the process whereby students of differing abilities are placed in classes with their chronological peers. Children with Down syndrome may not age emotionally/socially and intellectually at the same rates as children without Down syndrome, so over time the intellectual and emotional gap between children with and without Down syndrome may widen. Complex thinking as required in sciences but also in history, the arts, and other subjects can often be beyond the abilities of some, or achieved much later than in other children. Therefore, children with Down syndrome may benefit from mainstreaming provided that some adjustments are made to the curriculum.
Some European countries such as Germany and Denmark advise a two-teacher system, whereby the second teacher takes over a group of children with disabilities within the class. A popular alternative is cooperation between special schools and mainstream schools. In cooperation, the core subjects are taught in separate classes, which neither slows down the typical students nor neglects the students with disabilities. Social activities, outings, and many sports and arts activities are performed together, as are all breaks and meals.
Speech delay may require speech therapy to improve expressive language. and is considered alternative medicine.
Maternal age influences the chances of conceiving a baby with Down syndrome. At maternal age 20 to 24, the probability is one in 1562; at age 35 to 39 the probability is one in 214, and above age 45 the probability is one in 19. Although the probability increases with maternal age, 80% of children with Down syndrome are born to women under the age of 35, reflecting the overall fertility of that age group. Recent data also suggest that paternal age, especially beyond 42, also increases the risk of Down syndrome manifesting.
Current research (as of 2008) has shown that Down syndrome is due to a random event during the formation of sex cells or pregnancy. There has been no evidence that it is due to parental behavior (other than age) or environmental factors.
By the 20th century, Down syndrome had become the most recognizable form of mental disability. Most individuals with Down syndrome were institutionalized, few of the associated medical problems were treated, and most died in infancy or early adult life. With the rise of the eugenics movement, 33 of the (then) 48 U.S. states and several countries began programs of forced sterilization of individuals with Down syndrome and comparable degrees of disability. "Action T4" in Nazi Germany made public policy of a program of systematic murder. Court challenges, scientific advances and public revulsion led to discontinuation or repeal of such sterilization programs during the decades after World War II.
Until the middle of the 20th century, the cause of Down syndrome remained unknown. However, the presence in all races, the association with older maternal age, and the rarity of recurrence had been noticed. Standard medical texts assumed it was caused by a combination of inheritable factors that had not been identified. Other theories focused on injuries sustained during birth.
With the discovery of karyotype techniques in the 1950s, it became possible to identify abnormalities of chromosomal number or shape. In 1959, Jérôme Lejeune discovered that Down syndrome resulted from an extra chromosome. The extra chromosome was subsequently labeled as the 21st, and the condition as trisomy 21.
In 1961, 18 geneticists wrote to the editor of The Lancet suggesting that Mongolian idiocy had "misleading connotations," had become "an embarrassing term," and should be changed. The Lancet supported Down's Syndrome. The World Health Organization (WHO) officially dropped references to mongolism in 1965 after a request by the Mongolian delegate. However, almost 40 years later, the term ‘mongolism’ still appears in leading medical texts such as General and Systematic Pathology, 4th Edition, 2004, edited by Professor Sir James Underwood. Advocacy groups adapted and parents groups welcomed the elimination of the Mongoloid label that had been a burden to their children. The first parents group in the United States, the Mongoloid Development Council, changed its name to the National Association for Down Syndrome in 1972.
In 1975, the United States National Institutes of Health convened a conference to standardize the nomenclature of malformations. They recommended eliminating the possessive form: "The possessive use of an eponym should be discontinued, since the author neither had nor owned the condition." Although both the possessive and non-possessive forms are used in the general population, Down syndrome is the accepted term among professionals in the U.S., Canada and other countries; Down's syndrome is still used in the UK and other areas.
Despite these changes, the additional support needs of people with Down syndrome can still pose a challenge to parents and families. Although living with family is preferable to institutionalization, people with Down syndrome often encounter patronizing attitudes and discrimination in the wider community.
The first World Down Syndrome Day was held on 21 March 2006. The day and month were chosen to correspond with 21 and trisomy respectively. It was proclaimed by European Down Syndrome Association during their European congress in Palma de Mallorca (febr. 2005). In the United States, the National Down Syndrome Society observes Down Syndrome Month every October as "a forum for dispelling stereotypes, providing accurate information, and raising awareness of the potential of individuals with Down syndrome." In South Africa, Down Syndrome Awareness Day is held every October 20. Organizations such as Special Olympics Hawaii provide year-round sports training for individuals with intellectual disabilities such as Down syndrome.
Research by Arron et al. shows that some of the phenotypes associated with Down syndrome can be related to the disregulation of transcription factors (596), and in particular, NFAT. NFAT is controlled in part by two proteins, DSCR1 and DYRK1A; these genes are located on chromosome-21 (Epstein 582). In people with Down syndrome, these proteins have 1.5 times greater concentration than normal (Arron et al. 597). The elevated levels of DSCR1 and DYRK1A keep NFAT primarily located in the cytoplasm rather than in the nucleus, preventing NFATc from activating the transcription of target genes and thus the production of certain proteins (Epstein 583).
This disregulation was discovered by testing in transgenic mice that had segments of their chromosomes duplicated to simulate a human chromosome-21 trisomy (Arron et al. 597). A test involving grip strength showed that the genetically modified mice had a significantly weaker grip, much like the characteristically poor muscle tone of an individual with Down syndrome (Arron et al. 596). The mice squeezed a probe with a paw and displayed a .2 newton weaker grip (Arron et al. 596). Down syndrome is also characterized by increased socialization. When modified and unmodified mice were observed for social interaction, the modified mice showed as much as 25% more interactions as compared to the unmodified mice (Arron et al. 596).
The genes that may be responsible for the phenotypes associated may be located proximal to 21q22.3. Testing by Olson and others in transgenic mice show the duplicated genes presumed to cause the phenotypes are not enough to cause the exact features. While the mice had sections of multiple genes duplicated to approximate a human chromosome-21 triplication, they only showed slight craniofacial abnormalities (688–90). The transgenic mice were compared to mice that had no gene duplication by measuring distances on various points on their skeletal structure and comparing them to the normal mice (Olson et al. 687). The exact characteristics of Down syndrome were not observed, so more genes involved for Down Syndrome phenotypes have to be located elsewhere.
Reeves et al., using 250 clones of chromosome-21 and specific gene markers, were able to map the gene in mutated bacteria. The testing had 99.7% coverage of the gene with 99.9995% accuracy due to multiple redundancies in the mapping techniques. In the study 225 genes were identified (311–13).
The search for major genes that may be involved in Down syndrome symptoms is normally in the region 21q21–21q22.3. However, studies by Reeves et al. show that 41% of the genes on chromosome-21 have no functional purpose, and only 54% of functional genes have a known protein sequence. Functionality of genes was determined by a computer using exon prediction analysis (312). Exon sequence was obtained by the same procedures of the chromosome-21 mapping.
Research has led to an understanding that two genes located on chromosome-21, that code for proteins that control gene regulators, DSCR1 and DYRK1A can be responsible for some of the phenotypes associated with Down syndrome. DSCR1 and DYRK1A cannot be blamed outright for the symptoms; there are a lot of genes that have no known purpose. Much more research would be needed to produce any appropriate or ethically acceptable treatment options.
Recent use of transgenic mice to study specific genes in the Down syndrome critical region has yielded some results. APP is an Amyloid beta A4 precursor protein. It is suspected to have a major role in cognitive difficulties. Another gene, ETS2 is Avian Erythroblastosis Virus E26 Oncogene Homolog 2. Researchers have "demonstrated that over-expression of ETS2 results in apoptosis. Transgenic mice over-expressing ETS2 developed a smaller thymus and lymphocyte abnormalities, similar to features observed in Down syndrome."
Category:Chromosomal abnormalities
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.