In communications and information processing, encoding is the process by which information from a source is converted into symbols to be communicated. Decoding is the reverse process, converting these code symbols back into information understandable by a receiver.
One reason for coding is to enable communication in places where ordinary spoken or written language is difficult or impossible. For example, semaphore, where the configuration of flags held signaller or the arms of a semaphore tower encodes parts of the message, typically individual letters and numbers. Another person standing a great distance away can interpret the flags and reproduce the words sent.
Before giving a mathematically precise definition, we give a brief example. The mapping : is a code, whose source alphabet is the set and whose target alphabet is the set . Using the extension of the code, the encoded string 0011001011 can be grouped into codewords as 0 – 011 – 0 – 01 – 011, and these in turn can be decoded to the sequence of source symbols acabc.
Using terms from formal language theory, the precise mathematical definition of this concept is as follows: Let S and T be two finite sets, called the source and target alphabets, respectively. A code is a total function mapping each symbol from S to a sequence of symbols over T, and the extension of M to a homomorphism of into , which naturally maps each sequence of source symbols to a sequence of target symbols, is referred to as its extension.
A prefix code is a code with the "prefix property": there is no valid code word in the system that is a prefix (start) of any other valid code word in the set. Huffman coding is the most known algorithm for deriving prefix codes, so prefix codes are also widely referred to as "Huffman codes", even when the code was not produced by a Huffman algorithm. Other examples of prefix codes are country calling codes, the country and publisher parts of ISBNs, and the Secondary Synchronization Codes used in the UMTS W-CDMA 3G Wireless Standard.
Kraft's inequality characterizes the sets of code word lengths that are possible in a prefix code. Virtually, any uniquely decodable one-to-many code, not necessary a prefix one, must satisfy Kraft's inequality.
Codes can be used for brevity. When telegraph messages were the state of the art in rapid long distance communication, elaborate systems of commercial codes that encoded complete phrases into single words (commonly five-letter groups) were developed, so that telegraphers became conversant with such "words" as BYOXO ("Are you trying to weasel out of our deal?"), LIOUY ("Why do you not answer my question?"), BMULD ("You're a skunk!"), or AYYLU ("Not clearly coded, repeat more clearly."). Code words were chosen for various reasons: length, pronounceability, etc. Meanings were chosen to fit perceived needs: commercial negotiations, military terms for military codes, diplomatic terms for diplomatic codes, any and all of the preceding for espionage codes. Codebooks and codebook publishers proliferated, including one run as a front for the American Black Chamber run by Herbert Yardley between the First and Second World Wars. The purpose of most of these codes was to save on cable costs. The use of data coding for data compression predates the computer era; an early example is the telegraph Morse code where more-frequently used characters have shorter representations. Techniques such as Huffman coding are now used by computer-based algorithms to compress large data files into a more compact form for storage or transmission.
In marketing, coupon codes can be used for a financial discount or rebate when purchasing a product from an internet retailer.
In military environments, specific sounds with the cornet are used for different uses: to mark some moments of the day, to command the infantry in the battlefield, etc.
Communication systems for sensory impairments, as the sign language for deaf people and braille for blind people, are based in movement or tactile codes.
Musical scores are the most common way to encode music.
Specific games, as chess, have their own code systems to record the matches (chess notation).
Secret codes intended to obscure the real messages, ranging from serious (mainly espionage in military, diplomatic, business, etc.) to trivial (romance, games) can be any kind of imaginative encoding: flowers, game cards, clothes, fans, hats, melodies, birds, etc., in which the sole requisite is the previous agreement of the meaning by both the sender and the receiver.
Other examples of decoding include:
International Air Transport Association airport codes are three-letter codes used to designate airports and used for bag tags.
Occasionally a code word achieves an independent existence (and meaning) while the original equivalent phrase is forgotten or at least no longer has the precise meaning attributed to the code word. For example, '30' was widely used in journalism to mean "end of story", and it is sometimes used in other contexts to signify "the end".
Category:Encodings Category:Signal processing
bs:Kod ca:Codi cs:Kód da:Kode de:Code et:Kood el:Κώδικας (υπολογιστές) eo:Kodo fa:کد ko:부호 (정보) hr:Kod id:Kode it:Codice (teoria dell'informazione) he:קוד kk:Кода (электроника) hu:Kód ja:符号 no:Kode nn:Kode pl:Kod ru:Код simple:Code sk:Kód (informatika) sr:Код sh:Код fi:Koodi sv:Kodning th:รหัส uk:Код vi:Mã hiệuThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.