Neodymium compounds were first commercially used as glass dyes in 1927, and they remain a popular additive in glasses. The color of neodymium compounds—due to the Nd(III) ion—is often a reddish-purple but it changes with the type of lighting, due to fluorescent effects. Some neodymium-doped glasses are also used in lasers that emit infrared light with wavelengths between 1047 and 1062 nanometers. These have been used in extremely high power applications, such as experiments in inertial confinement fusion.
Neodymium is also used with various other substrate crystals, such as yttrium aluminum garnet in the Nd:YAG laser. This laser usually emits infrared waves at a wavelength of about 1064 nanometers. The Nd:YAG laser is one of the most commonly used solid-state lasers.
Another chief use of neodymium is as the free pure element. It is used as a component in the alloys used to make high-strength neodymium magnets – the most powerful permanent magnets known. These magnets are widely used in such products as microphones, professional loudspeakers, in-ear headphones, and computer hard disks, where low magnet mass or volume, or strong magnetic fields are required. Larger neodymium magnets are used in high power versus weight electric motors (for example in hybrid cars) and generators (for example aircraft and wind turbine electric generators).
Neodymium exists in two allotropic forms, with a transformation from a double hexagonal to a body-centered cubic structure taking place at about 863 °C.
Neodymium is a quite electropositive element, and it reacts slowly with cold water, but quite quickly with hot water to form neodymium hydroxide: :2 Nd (s) + 6 H2O (l) → 2 Nd(OH)3 (aq) + 3 H2 (g)
Neodymium metal reacts enthusiastically with all the halogens: :2 Nd (s) + 3 F2 (g) → 2 NdF3 (s) [a violet substance] :2 Nd (s) + 3 Cl2 (g) → 2 NdCl3 (s) [a mauve substance] :2 Nd (s) + 3 Br2 (g) → 2 NdBr3 (s) [a violet substance] :2 Nd (s) + 3 I2 (g) → 2 NdI3 (s) [a green substance]
Neodymium dissolves readily in dilute sulfuric acid to form solutions that contain the lilac Nd(III) ion. These exist as a [Nd(OH2)9]3+ complexes:
:2 Nd (s) + 3 H2SO4 (aq) → 2 Nd3+ (aq) + 3 SO (aq) + 3 H2 (g)
And many more, since neodymium is a quite reactive element
Some neodymium compounds have colors which vary based upon the type of lighting.
The primary decay modes before the most abundant stable isotope, 142Nd, are electron capture and positron decay, and the primary mode after is beta minus decay. The primary decay products before 142Nd are element Pr (praseodymium) isotopes and the primary products after are element Pm (promethium) isotopes.
Double nitrate crystallization was the means of commercial neodymium purification until the 1950s. Lindsay Chemical Division was the first to commercialize large-scale ion-exchange purification of neodymium. Starting in the 1950s, high purity (above 99%) neodymium was primarily obtained through an ion exchange process from monazite, a mineral rich in rare earth elements. The metal itself is obtained through electrolysis of its halide salts. Currently, most neodymium is extracted from bastnäsite, (Ce,La,Nd,Pr)CO3F, and purified by solvent extraction. Ion-exchange purification is reserved for preparing the highest purities (typically >99.99 %). The evolving technology, and improved purity of commercially available neodymium oxide, was reflected in the appearance of neodymium glass that resides in collections today. Early neodymium glasses made in the 1930s have a more reddish or orange tinge than modern versions which are more cleanly purple, due to the difficulties in removing the last traces of praseodymium in the era when fractional crystallization technology had to be relied on.
Neodymium is typically 10% to 18% of the rare earth content of commercial deposits of the light rare earth element minerals bastnasite and monazite. With neodymium compounds being the most strongly colored for the trivalent lanthanides, that percentage of neodymium can occasionally dominate the coloration of rare earth minerals—when competing chromophores are absent. It usually gives a pink coloration. Outstanding examples of this include monazite crystals from the tin deposits in Llallagua, Bolivia, ancylite from Mont Saint-Hilaire, Quebec, or lanthanite from the Saucon Valley, Pennsylvania. As with neodymium glasses, such minerals change their colors under the differing lighting conditions. The absorption bands of neodymium interact with the visible emission spectrum of mercury vapor, with the unfiltered shortwave UV light causing neodymium-containing minerals to reflect a distinctive green color. This can be observed with monazite-containing sands or bastnasite-containing ore.
The current laser at the UK Atomic Weapons Establishment (AWE), the HELEN (High Energy Laser Embodying Neodymium) 1-terawatt neodymium-glass laser, can access the midpoints of pressure and temperature regions and is used to acquire data for modeling on how density, temperature and pressure interact inside warheads. HELEN can create plasmas of around 106 K, from which opacity and transmission of radiation are measured.
Neodymium glass solid-state lasers are used in extremely high power (terawatt scale), high energy (megajoules) multiple beam systems for inertial confinement fusion. Nd:glass lasers are usually frequency tripled to the third harmonic at 351 nm in laser fusion devices.
The first commercial use of purified neodymium was in glass coloration, starting with experiments by Leo Moser in November 1927. The resulting "Alexandrite" glass remains a signature color of the Moser glassworks to this day. Neodymium glass was widely emulated in the early 1930s by American glasshouses, most notably Heisey, Fostoria ("wisteria"), Cambridge ("heatherbloom"), and Steuben ("wisteria"), and elsewhere (e.g. Lalique, in France, or Murano). Tiffin's "twilight" remained in production from about 1950 to 1980. Current sources include glassmakers in the Czech Republic, the United States, and China.
The sharp absorption bands of neodymium cause the glass color to change under different lighting conditions, being reddish-purple under daylight or yellow incandescent light, but blue under white fluorescent lighting, or greenish under trichromatic lighting. This color-change phenomenon is highly prized by collectors. In combination with gold or selenium, beautiful red colors result. Since neodymium coloration depends upon "forbidden" f-f transitions deep within the atom, there is relatively little influence on the color from the chemical environment, so the color is impervious to the thermal history of the glass. However, for the best color, iron-containing impurities need to be minimized in the silica used to make the glass. The same forbidden nature of the f-f transitions makes rare-earth colorants less intense than those provided by most d-transition elements, so more has to be used in a glass to achieve the desired color intensity. The original Moser recipe used about 5% of neodymium oxide in the glass melt, a sufficient quantity such that Moser referred to these as being "rare earth doped" glasses. Being a strong base, that level of neodymium would have affected the melting properties of the glass, and the lime content of the glass might have had to be adjusted accordingly.
Light transmitted through neodymium glasses shows unusually sharp absorption bands; the glass is used in astronomical work to produce sharp bands by which spectral lines may be calibrated. Neodymium is also used to remove the green color caused by iron contaminants from glass. Neodymium is a component of didymium used for coloring glass to make welder's and glass-blower's goggles; the sharp absorption bands obliterate the strong sodium emission at 589 nm.
Neodymium and didymium glass are used in color-enhancing filters in indoor photography, particularly in filtering out the yellow hues from incandescent lighting.
Similarly, neodymium glass is becoming widely used more directly in incandescent light bulbs. These lamps contain neodymium in the glass to filter out yellow light, resulting in a whiter light which is more like sunlight.
Neodymium has been patented for use in automobile rear-view mirrors, to reduce the glare at night.
Similar to its use in glasses, neodymium salts are used as a colorant for enamels.
Neodymium magnets have been tested for medical uses such as magnetic braces and bone repair, but biocompatibility issues have prevented widespread application. Commercially available magnets made from neodymium are exceptionally strong, and can attract each other from large distances. If not handled carefully, they come together very quickly and forcefully, causing injuries. For example, there is at least one documented case of a person losing a fingertip when two magnets he was using snapped together from 50 cm away.
Category:Chemical elements Category:Lanthanides Category:Neodymium Category:Reducing agents
ar:نيوديميوم az:Neodim bn:নিওডিমিয়াম be:Неадым bs:Neodijum bg:Неодим ca:Neodimi cv:Неодим cs:Neodym co:Neodimiu cy:Neodymiwm da:Neodym de:Neodym et:Neodüüm el:Νεοδύμιο es:Neodimio eo:Neodimo eu:Neodimio fa:نئودیمیم hif:Neodymium fr:Néodyme fur:Neodimi ga:Neoidimiam gv:Niodymium gl:Neodimio hak:Ńg xal:Неодим ko:네오디뮴 hy:Նեոդիմ hi:नियोडाइमियम hr:Neodimij io:Neodimio id:Neodimium it:Neodimio he:נאודימיום jv:Neodimium kv:Неодим ht:Neyodim la:Neodymium lv:Neodīms lb:Neodym lt:Neodimis lij:Neodimio jbo:jinmrne,odimi hu:Neodímium ml:നിയോഡൈമിയം mr:नियोडायमियम ms:Neodimium my:နီယိုဒိုင်မီယမ် mrj:Неодим nl:Neodymium ja:ネオジム no:Neodym nn:Neodym pnb:نیوڈائمیم pl:Neodym pt:Neodímio ro:Neodim qu:Neodimyu ru:Неодим sah:Неодимиум stq:Neodymium scn:Neodimiu simple:Neodymium sk:Neodým sl:Neodim sr:Неодијум sh:Neodijum fi:Neodyymi sv:Neodym ta:நியோடைமியம் th:นีโอดิเมียม tr:Neodimyum uk:Неодим ur:Neodymium ug:نېئودىي vi:Neodymi war:Neodimyo yo:Neodymium zh-yue:釹 zh:钕This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.