- Order:
- Duration: 13:55
- Published: 16 Sep 2010
- Uploaded: 13 Aug 2011
- Author: khanacademy
A nucleophile is an electron-rich chemical reactant that is attracted to electron-deficient compounds. Examples of nucleophiles are anions such as Cl−, or a compound with a lone pair of electrons such as NH3 (ammonia).
Nucleophiles may take part in nucleophilic substitution, whereby a nucleophile becomes attracted to a full or partial positive charge.
Nucleophilic is an adjective that describes the affinity of a nucleophile to the nuclei, whereas nucleophilicity or nucleophile strength refers to the nucleophilic character. Nucleophilicity is often used to compare an atom's relative affinity to another's.
In general, in a row across the periodic table, the more basic the ion (the higher the pKa of the conjugate acid) the more reactive it is as a nucleophile. In a given group, polarizability is more important in the determination of the nucleophilicity: The easier it is to distort the electron cloud around an atom or molecule the more readily it will react; e.g., the iodide ion (I−) is more nucleophilic than the fluoride ion (F−).
An ambident nucleophile is one that can attack from two or more places, resulting in two or more products. For example, the thiocyanate ion (SCN−) may attack from either the or the . For this reason, the SN2 reaction of an alkyl halide with SCN− often leads to a mixture of RSCN (an alkyl thiocyanate) and RNCS (an alkyl isothiocyanate). Similar considerations apply in the Kolbe nitrile synthesis.
The terms nucleophile and electrophile were introduced by Christopher Kelk Ingold in 1929, replacing the terms cationoid and anionoid proposed earlier by A. J. Lapworth in 1925.
Enols are also carbon nucleophiles. The formation of an enol is catalyzed by acid or base. Enols are ambident nucleophiles, but, in general, nucleophilic at the alpha carbon atom. Enols are commonly used in condensation reactions, including the Claisen condensation and the aldol condensation reactions.
In general, sulfur is very nucleophilic because of its large size, which makes it readily polarizable, and its lone pairs of electrons are readily accessible.
:
This free-energy relationship relates the pseudo first order reaction rate constant (in water at 25 °C), k, of a reaction, normalized to the reaction rate, k0, of a standard reaction with water as the nucleophile, to a nucleophilic constant n for a given nucleophile and a substrate constant s that depends on the sensitivity of a substrate to nucleophilic attack (defined as 1 for methyl bromide).
This treatment results in the following values for typical nucleophilic anions: acetate 2.7, chloride 3.0, azide 4.0, hydroxide 4.2, aniline 4.5, iodide 5.0, and thiosulfate 6.4. Typical substrate constants are 0.66 for ethyl tosylate, 0.77 for β-propiolactone, 1.00 for 2,3-epoxypropanol, 0.87 for benzyl chloride, and 1.43 for benzoyl chloride.
The equation predicts that, in a nucleophilic displacement on benzyl chloride, the azide anion reacts 3000 times faster than water.
In the original publication the data were obtained by reactions of selected nucleophiles with selected electrophilic carbocations such as tropylium cations:
or diazonium cations:
:
or (not displayed) ions based on Malachite green. Many other reaction types have since been described.
Typical Ritchie N+ values (in methanol) are: 0.5 for methanol, 5.9 for the cyanide anion, 7.5 for the methoxide anion, 8.5 for the azide anion, and 10.7 for the thiophenol anion. The values for the relative cation reactivities are -0.4 for the malachite green cation, +2.6 for the benzenediazonium cation, and +4.5 for the tropylium cation.
The second order reaction rate constant k at 20°C for a reaction is related to a nucleophilicity parameter N, an electrophilicity parameter E, and a nucleophile-dependent slope parameter s. The constant s is defined as 1 with 2-methyl-1-pentene as the nucleophile.
Many of the constants have been derived from reaction of so-called benzhydrylium ions as the electrophiles: and a diverse collection of π-nucleophiles: :.
Typical E values are +6.2 for R = chlorine, +5.90 for R = hydrogen, 0 for R = methoxy and -7.02 for R = dimethylamine.
Typical N values with s in parenthesis are -4.47 (1.32) for electrophilic aromatic substitution to toluene (1), -0.41 (1.12) for electrophilic addition to 1-phenyl-2-propene (2), and 0.96 (1) for addition to 2-methyl-1-pentene (3), -0.13 (1.21) for reaction with triphenylallylsilane (4), 3.61 (1.11) for reaction with 2-methylfuran (5), +7.48 (0.89) for reaction with isobutenyltributylstannane (6) and +13.36 (0.81) for reaction with the enamine 7.
The range of organic reactions also include SN2 reactions:
With E = -9.15 for the S-methyldibenzothiophenium ion, typical nucleophile values N (s) are 15.63 (0.64) for piperidine, 10.49 (0.68) for methoxide, and 5.20 (0.89) for water. In short, nucleophilicities towards sp2 or sp3 centers follow the same pattern.
with sE the electrophile-dependent slope parameter and sN the nucleophile-dependent slope parameter. This equation can be rewritten in several ways:
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.