Sabkha is a transliteration of the Arabic word for a salt flat. Sabkhas are supratidal, forming along arid coastlines and are characterized by evaporite-carbonate deposits with some siliciclastics. Sabkhas form subaerial, prograding and shoaling-upward sequences that have an average thickness of a meter or less. The accepted type locality is along the coast of the Persian Gulf in the United Arab Emirates. This article outlines research into the evolution, hydrocarbon potential, climate, and dynamic nature of these deposits.
The origin and progression of sabkha development in the Persian Gulf is discussed by Al-Farraj (2005). In the khor-lagoon-sabkha model presented, an initial rise in sea-level floods coastal dune fields forming embayments between the dune crests. As the sediment is re-worked by the dominant winds and currents, spits, that parallel the shore, create a khor. A khor is a shallow, subtidal flat or tidal inlet in which grey mangroves may or may not grow depending on whether less saline water is available from wadis or groundwater. As sediment now begins to accumulate, these khors shallow and begin to form a lagoon, an intertidal flat. The lagoons continue to shallow until the lagoon floor is exposed at low tide. This is the beginning of sabkha development. An immature sabkha will be inundated during higher than normal spring tides, after rainstorms, or when driving winds push seawater onshore to a depth of a few centimeters. Mature sabkhas are only flooded after heavy rainstorms and eventually coalesce to form a sabkha coastal plain. These coastal plains are very flat, with reliefs between 10-50cm, and their seaward slope can be as little as 1:1,000. The flatness of a sabkha is enhanced by aeolian siliciclastic dust being deposited in the topographic lows with most of the relief caused by evaporites.
These environments can be found laterally contemporaneous in parallel belts to the coast as well. Coral reefs, barrier islands, and oolite shoals form the barrier with the open shelf. These types of deposits are indicative of higher energy and protect the khor-lagoon environments, allowing for the growth of mangrove swamps and algal and cyano-bacterial mats that prefer the more closed, lower energy environment. Inland of this are the supratidal sabkhas. The sabkhas can be as wide as 15 km when seaward of dune fields supplying large amounts of sediment. Sabkhas seaward of low outcrops of Miocene carbonate-evaporites or alluvial fans off the Oman fold and thrust belt can be as narrow as several hundred meters.
The climate is one of the main factors in sabkha development. Rainfall in this arid region usually occurs as thunderstorms and averages 4cm/year. Temperatures can range in excess of 50°C to as low as 0°C. Humidity is linked to the wind direction, with humidity as low as 20% in the mornings from off the dry interior and building in the afternoon as a strong, onshore wind prevail. At night, relative humidity of 100% can lead to dense fogs. Water temperatures vary by depth with shallow water as much as 10+°C warmer. These high temperatures drive high rates of evaporation in the Persian Gulf, as much as 124 cm/year leading salinity to increase in the shallow lagoons to as much as 70ppt. The net rate of evaporation from the sabkha can be as much as an order of magnitude less and has averaged 6cm for the last 4,000 to 5,000 years. The reasons for this are that the sabkha surface is not a free-water surface, the high humidity during the night, and vertical stratification of the air column. Despite the loss of water due to evaporation, the groundwater, never deeper than 1.5m, flows seawards and is recharged by continental waters, rainstorms, and the NW “shamal” gale-force winds that create waves of greater height than the intertidal height and drive water as much as 5km inland over the sabkha to a depth of a few centimeters.
The climate variations lead to the very dynamic nature of a sabkha. Halite is deposited on the surface of the sabkha and gypsum and aragonite precipitate in the subsurface via capillary action out of brines brought up from the water table. In drier parts of the sabkha the gypsum can be altered to anhydrite and the aragonite can be dolomitized diagenetically. Thermal contraction at night and expansion during the day leads to concave polygonal pans as the edges have been upturned, in part due to growth of evaporites wedging the crack apart. Below this is a gypsum mush where nodules of anhydrite and other sulfates may develop. These might also form a “chicken wire” crystalline structure. Below this are the intertidal deposits typified by laminated, organic rich muds formed by the microbial mats that grade downward into more bioturbated muds. The subtidal facies show carbonate grainstones and lagoonal muds.These facies sequences, except for the halite that is frequently re-dissolved when wetted, can easily be preserved. Factors enabling preservation include the progradation of the sabkha with sedimentation rates of 1m/1000 years and the creation of Stokes surfaces. These surfaces are created by the deflation of the sabkha surface that is related to the level of the groundwater table acting as a local base level.
Sabkha deposits are believed to form some of the major subsurface hydrocarbon reservoirs in the Middle East (and elsewhere). The source of these hydrocarbons (both gas and oil) may be the microbial mats and mangrove paleosoils, found in the sabkha sequence, that have total organic carbon up to 8.2% and hydrogen indices typical of marine type II kerogens.
Some ancient analogs include immediate subsurface formations such as the Permian Khuff, Jurassic Arab and Hith Anhydrite, and Tertiary sedimentary rocks. Similar deposits are also found in the Ordovician Williston Basin, the Permian Basin in Texas, as well as the Jurassic Gulf of Mexico. Modern sabkhas are present in varying form along the coasts of North Africa, Baja California, and at Shark Bay in Australia.
Category:Salt flats Category:Geological processes Category:Arabic words and phrases
ar:سبخة ca:Sabkhat de:Sabcha fr:Sebkha gl:Sabha he:מלחה ja:サブカ pl:SebhaThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.