In many applications, the current flow (typically in the range 1mA to 1A) is able to be pulsed on for between about 1ms to 1s. This enables consistent doses of x-rays, and taking snapshots of motion. Until the late 1980s, X-ray generators were merely high-voltage, AC to DC variable power supplies. In the late 1980s a different method of control was emerging, called high speed switching. This followed the electronics technology of switching power supplies (aka switch mode power supply), and allowed for more accurate control of the X-ray unit, higher quality results, and reduced X-ray exposures.
Electrons from the cathode collide with the anode material, usually tungsten, molybdenum or copper, and accelerate other electrons, ions and nuclei within the anode material. About 1% of the energy generated is emitted/radiated, usually perpendicular to the path of the electron beam, as X-rays. The rest of the energy is released as heat. Over time, tungsten will be deposited from the target onto the interior surface of the tube, including the glass surface. This will slowly darken the tube and was thought to degrade the quality of the X-ray beam, but research has suggested there is no effect. Eventually, the tungsten deposit may become sufficiently conductive that at high enough voltages, arcing occurs. The arc will jump from the cathode to the tungsten deposit, and then to the anode. This arcing causes an effect called "crazing" on the interior glass of the X-ray window. As time goes on, the tube becomes unstable even at lower voltages, and must be replaced. At this point, the tube assembly (also called the "tube head") is removed from the X-ray system, and replaced with a new tube assembly. The old tube assembly is shipped to a company that reloads it with a new X-ray tube.
The X-ray photon-generating effect is generally called the Bremsstrahlung effect, a contraction of the German brems for braking, and strahlung for radiation.
The range of photonic energies emitted by the system can be adjusted by changing the applied voltage, and installing aluminum filters of varying thicknesses. Aluminum filters are installed in the path of the X-ray beam to remove "soft" (non-penetrating) radiation. The number of emitted X-ray photons, or dose, are adjusted by controlling the current flow and exposure time.
Simply put, the high voltage controls X-ray penetration, and thus the contrast of the image. The tube current and exposure time affect the dose and therefore the darkness of the image.
Historically, x-rays were discovered radiating from experimental discharge tubes called Crookes tubes invented by British physicist William Crookes and others. As the medical and other uses of x-rays became apparent, workshops began to manufacture specialized Crookes tubes to produce x-rays. These were the first x-ray tubes. These first generation cold cathode or Crookes x-ray tubes were used until the 1920s.
Crookes tubes generated the electrons needed to create x-rays by ionization of the residual air in the tube, instead of a heated filament, so they were partially but not completely evacuated. They consisted of a glass bulb with around 10-6 to 5×10-8 atmospheric pressure of air (0.1 to 0.005 Pa). An aluminum cathode plate at one end of the tube created a beam of electrons, which struck a platinum anode target at the center generating x-rays. The anode surface was angled so that the x-rays would radiate through the side of the tube. The cathode was concave so that the electrons were focused on a small (~1 mm) spot on the anode, approximating a point source of x-rays, which resulted in sharper images. The tube had a third electrode, an anticathode connected to the anode. It improved the X-ray output, but the method by which it achieved this is not understood. A more common arrangement used a cupped plate anticathode (similar in constriction to the cathode) in line with the anode such that the anode was between the cathode and the anticathode.
To operate, a DC voltage of a few kilovolts to as much as 100 kV was applied between the anodes and the cathode, usually generated by an induction coil, or for larger tubes, an electrostatic machine. This created and then accelerated a small number of ions from the low pressure gas in the tube. These struck further gas atoms, knocking electrons off them, creating more positive ions in a chain reaction. All the positive ions were attracted to the cathode. When they struck it, they knocked electrons out of the metal, which were accelerated along with the electrons knocked from the gas atoms toward the anode target. When these high speed electrons struck the atoms of the anode, they created x-rays by one of two processes, either Bremsstrahlung or x-ray fluorescence.
Crookes tubes were unreliable. As time passed, the residual air would be absorbed by the walls of the tube, reducing the pressure. This increased the voltage across the tube, generating 'harder' x-rays, until eventually the tube stopped working. To prevent this, 'softener' devices were used (see picture). A small tube attached to the side of the main tube contained a mica sleeve or chemical that released a small amount of gas when heated, restoring the correct pressure.
The glass envelope of the tube would blacken in use due to the X-rays affecting its structure.
The Crookes tube was improved by William Coolidge in 1913. The Coolidge tube, also called hot cathode tube, is the most widely used. It works with a very good quality vacuum (about 10-4 Pa, or 10-6 Torr).
In the Coolidge tube, the electrons are produced by thermionic effect from a tungsten filament heated by an electric current. The filament is the cathode of the tube. The high voltage potential is between the cathode and the anode, the electrons are thus accelerated, and then hit the anode.
There are two designs: end-window tubes and side-window tubes.
End window tubes usually have "transmission target" which is thin enough to allow X-rays to pass through the target (X-rays are emitted in the same direction as the electrons are moving.) In one common type of end-window tube, the filament is around the anode ("annular" or ring-shaped), the electrons have a curved path.(half of a toroid)
What is special about side-window tubes is:
The power of a Coolidge tube usually ranges from 0.1 to 18 kW.
Because the entire anode assembly has to be contained within the evacuated tube, heat removal is a serious problem, further exacerbated by the higher power rating available. Direct cooling by conduction or convection, as in the Coolidge tube, is difficult. In most tubes, the anode is suspended on ball bearings with silver powder lubrication which provide almost negligible cooling by conduction.
A recent development has been liquid gallium lubricated fluid dynamic bearings which can withstand very high temperatures without contaminating the tube vacuum. The large bearing contact surface and metal lubricant provide an effective method for conduction of heat from the anode.
The anode must be constructed of high temperature materials. The focal spot temperature can reach during an exposure, and the anode assembly can reach following a series of large exposures. Typical materials are a tungsten-rhenium target on a molybdenum core, backed with graphite. The rhenium makes the tungsten more ductile and resistant to wear from the impact of the electron beams. The molybdenum conducts heat from the target. The graphite provides thermal storage for the anode, and minimizes the rotating mass of the anode.
Increasing demand for high-performance Computed tomography(CT) scanning and angiography systems has driven development of very high performance medical X-ray tubes. Contemporary CT tubes have power ratings of up to 100 kW and anode heat capacity of 6 MJ, yet retain an effective focal spot area of less than 1 mm2.
There are two basic types of microfocus x-ray tubes: solid-anode tubes and metal-jet-anode tubes.
Solid-anode microfocus x-ray tubes are in principle very similar to the Coolidge tube, but with the important distinction that care has been taken to be able to focus the electron beam into a very small spot on the anode. Many microfocus x-ray sources operate with focus spots in the range 5-20 µm, but in the extreme cases spots smaller than 1 µm may be produced.
The major drawback of solid-anode microfocus x-ray tubes is the very low power they operate at. In order to avoid melting of the anode the electron-beam power density must be below a maximum value. This value is somewhere in the range 0.4-0.8 W/µm depending on the anode material. This means that a solid-anode microfocus source with a 10 µm electron-beam focus can operate at a power in the range 4-8 W.
In metal-jet-anode microfocus x-ray tubes the solid metal anode is replaced with a jet of liquid metal, which acts as the electron-beam target. The advantage of the metal-jet anode is that the maximum electron-beam power density is significantly increased. Values in the range 3-6 W/µm have been reported for different anode materials (gallium and tin). In the case with a 10 µm electron-beam focus a metal-jet-anode microfocus x-ray source may operate at 30-60 W.
The major benefit of the increased power density level for the metal-jet x-ray tube is the possibility to operate with a smaller focal spot, say 5 µm, to increase image resolution and at the same time acquire the image faster, since the power is higher (15-30 W) than for solid-anode tubes with 10 µm focal spots.
More recently, concern has been expressed about the magnetron tubes in microwave ovens, although with operating voltages of only 4-5 kilovolts it is doubtful whether any x-rays produced could penetrate the tube envelope, typically constructed of ceramic and metal. No verified reports of oven magnetrons producing measurable X-rays appear to have been published.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.