Coordinates | °′″N°′″N |
---|---|
{{infobox disease | name | Autoimmunity | Image | Caption | DiseasesDB 28805 | ICD10 | ICD9 | ICDO | OMIM 109100 | MedlinePlus | eMedicineSubj | eMedicineTopic | MeshID D001327 }} |
Autoimmunity is the failure of an organism to recognize its own constituent parts as ''self'', which allows an immune response against its own cells and tissues. Any disease that results from such an aberrant immune response is termed an autoimmune disease. Autoimmunity is often caused by a lack of germ development of a target body and as such the immune response acts against its own cells and tissues. Prominent examples include Coeliac disease, diabetes mellitus type 1 (IDDM), systemic lupus erythematosus (SLE), Sjögren's syndrome, Churg-Strauss Syndrome, Hashimoto's thyroiditis, Graves' disease, idiopathic thrombocytopenic purpura, rheumatoid arthritis (RA), lupus and allergies. Autoimmune diseases are very often treated with steroids.
The misconception that an individual's immune system is totally incapable of recognizing ''self'' antigens is not new. Paul Ehrlich, at the beginning of the twentieth century, proposed the concept of horror autotoxicus, wherein a 'normal' body does not mount an immune response against its own tissues. Thus, any autoimmune response was perceived to be abnormal and postulated to be connected with human disease. Now, it is accepted that autoimmune responses are an integral part of vertebrate immune systems (sometimes termed 'natural autoimmunity'), normally prevented from causing disease by the phenomenon of immunological tolerance to self-antigens. Autoimmunity should not be confused with alloimmunity.
Second, autoimmunity may have a role in allowing a rapid immune response in the early stages of an infection when the availability of foreign antigens limits the response (i.e., when there are few pathogens present). In their study, Stefanova et al. (2002) injected an anti-MHC Class II antibody into mice expressing a single type of MHC Class II molecule (H-2b) to temporarily prevent CD4+ T cell-MHC interaction. Naive CD4+ T cells (those that have not encountered any antigens before) recovered from these mice 36 hours post-anti-MHC administration showed decreased responsiveness to the antigen pigeon cytochrome C peptide, as determined by Zap-70 phosphorylation, proliferation, and Interleukin-2 production. Thus Stefanova et al. (2002) demonstrated that self-MHC recognition (which, if too strong may contribute to autoimmune disease) maintains the responsiveness of CD4+ T cells when foreign antigens are absent. This idea of autoimmunity is conceptually similar to play-fighting. The play-fighting of young cubs (TCR and self-MHC) may result in a few scratches or scars (low-level-autoimmunity), but is beneficial in the long-term as it primes the young cub for proper fights in the future.
Three hypotheses have gained widespread attention among immunologists:
In addition, two other theories are under intense investigation: The so-called "Clonal Ignorance" theory, according to which host immune responses are directed to ignore self-antigens
Tolerance can also be differentiated into 'Central' and 'Peripheral' tolerance, on whether or not the above-stated checking mechanisms operate in the central lymphoid organs (Thymus and Bone Marrow) or the peripheral lymphoid organs (lymph node, spleen, etc., where self-reactive B-cells may be destroyed). It must be emphasised that these theories are not mutually exclusive, and evidence has been mounting suggesting that all of these mechanisms may actively contribute to vertebrate immunological tolerance.
A puzzling feature of the documented loss of tolerance seen in spontaneous human autoimmunity is that it is almost entirely restricted to the autoantibody responses produced by B lymphocytes. Loss of tolerance by T cells has been extremely hard to demonstrate, and where there is evidence for an abnormal T cell response it is usually not to the antigen recognised by autoantibodies. Thus, in rheumatoid arthritis there are autoantibodies to IgG Fc but apparently no corresponding T cell response. In systemic lupus there are autoantibodies to DNA, which cannot evoke a T cell response, and limited evidence for T cell responses implicates nucleoprotein antigens. In Celiac disease there are autoantibodies to tissue transglutaminase but the T cell response is to the foreign protein gliadin. This disparity has led to the idea that human autoimmune disease is in most cases (with probable exceptions including type I diabetes) based on a loss of B cell tolerance which makes use of normal T cell responses to foreign antigens in a variety of aberrant ways.
Three main sets of genes are suspected in many autoimmune diseases. These genes are related to:
The first two, which are involved in the recognition of antigens, are inherently variable and susceptible to recombination. These variations enable the immune system to respond to a very wide variety of invaders, but may also give rise to lymphocytes capable of self-reactivity.
Scientists such as H. McDevitt, G. Nepom, J. Bell and J. Todd have also provided strong evidence to suggest that certain MHC class II allotypes are strongly correlated with HLA DR2 is strongly positively correlated with Systemic Lupus Erythematosus, narcolepsy and multiple sclerosis, and negatively correlated with DM Type 1.
Fewer correlations exist with MHC class I molecules. The most notable and consistent is the association between HLA B27 and ankylosing spondylitis. Correlations may exist between polymorphisms within class II MHC promoters and autoimmune disease.
The contributions of genes outside the MHC complex remain the subject of research, in animal models of disease (Linda Wicker's extensive genetic studies of diabetes in the NOD mouse), and in patients (Brian Kotzin's linkage analysis of susceptibility to SLE).
!colspan=2 | |
Hashimoto's thyroiditis | 10/1 |
Graves' disease | 7/1 |
Multiple sclerosis (MS) | 2/1 |
Myasthenia gravis | 2/1 |
Systemic lupus erythematosus (SLE) | 9/1 |
Rheumatoid arthritis | 5/2 |
The reasons for the sex role in autoimmunity are unclear. Women appear to generally mount larger inflammatory responses than men when their immune systems are triggered, increasing the risk of autoimmunity. Involvement of sex steroids is indicated by that many autoimmune diseases tend to fluctuate in accordance with hormonal changes, for example, during pregnancy, in the menstrual cycle, or when using oral contraception. A history of pregnancy also appears to leave a persistent increased risk for autoimmune disease. It has been suggested that the slight exchange of cells between mothers and their children during pregnancy may induce autoimmunity. This would tip the gender balance in the direction of the female.
Another theory suggests the female high tendency to get autoimmunity is due to an imbalanced X chromosome inactivation. The X-inactivation skew theory, proposed by Princeton University's Jeff Stewart, has recently been confirmed experimentally in scleroderma and autoimmune thyroiditis. Other complex X-linked genetic susceptibility mechanisms are proposed and under investigation.
The putative mechanism is that the parasite attenuates the host immune response in order to protect itself. This may provide a serendipitous benefit to a host that also suffers from autoimmune disease. The details of parasite immune modulation are not yet known, but may include secretion of anti-inflammatory agents or interference with the host immune signaling.
A paradoxical observation has been the strong association of certain microbial organisms with autoimmune diseases. For example, ''Klebsiella pneumoniae'' and coxsackievirus B have been strongly correlated with ankylosing spondylitis and diabetes mellitus type 1, respectively. This has been explained by the tendency of the infecting organism to produce super-antigens that are capable of polyclonal activation of B-lymphocytes, and production of large amounts of antibodies of varying specificities, some of which may be self-reactive (see below).
Certain chemical agents and drugs can also be associated with the genesis of autoimmune conditions, or conditions that simulate autoimmune diseases. The most striking of these is the drug-induced lupus erythematosus. Usually, withdrawal of the offending drug cures the symptoms in a patient.
Cigarette smoking is now established as a major risk factor for both incidence and severity of rheumatoid arthritis. This may relate to abnormal citrullination of proteins, since the effects of smoking correlate with the presence of antibodies to citrullinated peptides.
The roles of specialized immunoregulatory cell types, such as regulatory T cells, NKT cells, γδ T-cells in the pathogenesis of autoimmune disease are under investigation.
Using the traditional “organ specific” and “non-organ specific” classification scheme, many diseases have been lumped together under the autoimmune disease umbrella. However, many chronic inflammatory human disorders lack the telltale associations of B and T cell driven immunopathology. In the last decade it has been firmly established that tissue "inflammation against self" does not necessarily rely on abnormal T and B cell responses.
This has led to the recent proposal that the spectrum of autoimmunity should be viewed along an “immunological disease continuum,” with classical autoimmune diseases at one extreme and diseases driven by the innate immune system at the other extreme. Within this scheme, the full spectrum of autoimmunity can be included. Many common human autoimmune diseases can be seen to have a substantial innate immune mediated immunopathology using this new scheme. This new classification scheme has implications for understanding disease mechanisms and for therapy development (see PLoS Medicine article. http://www.plosmedicine.org/article/info:doi/10.1371/journal.pmed.0030297).
Helminthic therapy is an experimental approach that involves inoculation of the patient with specific parasitic intestinal nematodes (helminths). There are currently two closely-related treatments available, inoculation with either Necator americanus, commonly known as hookworms, or Trichuris Suis Ova, commonly known as Pig Whipworm Eggs.
T cell vaccination is also being explored as a possible future therapy for auto-immune disorders.
ar:انضدادية bg:Автоимунитет ca:Malaltia autoimmunitària cs:Autoimunita da:Autoimmun de:Autoimmunerkrankung et:Autoimmuunsus es:Enfermedad autoinmune eu:Gaixotasun autoimmune fa:خودایمنی fr:Maladie auto-immune hi:स्वप्रतिरक्षा hr:Autoimuna bolest id:Autoimunitas it:Malattia autoimmunitaria he:מחלת חיסון עצמי hu:Autoimmun betegség nl:Auto-immuunziekte ne:स्वप्रतिरक्षा ja:自己免疫疾患 no:Autoimmun sykdom pl:Autoagresja komórek pt:Autoimunidade ru:Аутоиммунные заболевания sk:Autoimunitná choroba sl:Avtoimunska bolezen sr:Аутоимуни поремећај fi:Autoimmuunisairaus sv:Autoimmunitet ta:தன்னுடல் தாக்குமை th:ภาวะภูมิต้านตนเอง tr:Özbağışıklık uk:Автоімунні захворювання zh:自體免疫性疾病
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.