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A Linear Algorithm For Generating Random 
Numbers With a Given Distribution 

Michael D. Vose 

Abstract-Let [ be a random variable over a finite set with 
an arbitrary probability distribution. In this paper we make 
improvements to a fast method of generating sample values for 
( in constant time. 

Index Terms-Random, random-number, random-variable. 

I. INTRODUCTION 

ET [ be a random variable distributed over the 
L s e t  (a0 , . . . , an- l}  with corresponding probabilities 
{ P O , .  . . ,pn-l}.  A fast and simple method of generating 
sample values for [ has been described by several people 
(Moss et al. [3], Walker [4], Knuth (21). This method produces 
a set of sample values in time proportional to sample size. 
Unfortunately, the method as described requires O ( n  Inn) 
time for initialization. In particular, if the distribution of 
changes frequently, then the time required to initialize the 
algorithm to a new distribution becomes a bottleneck. For 
example, this situation arises in Genetic Algorithms where 
sample values are needed from a population whose distribution 
is constantly changing [ 11. 

We present a modification which reduces the time required 
for initialization to O ( n ) .  For a simple Genetic Algorithm, this 
improvement changes an O ( g  n I n n )  algorithm into an O ( g  n)  
algorithm (where g is the number of generations, and n is the 
population size). For clarity and completeness we present our 
version in full detail. 

The model of computation we assume includes the follow- 
ing: 

The existence of a constant time uniform random number 
generator 
a constant time floor operation 
constant time subtraction, comparison, and array refer- 
ence 
no floating point rounding errors. 

This last assumption is partially addressed in Section V, where 
rounding errors are considered. 

11. SPECIFICATION 

and rand, which share state and satisfy: 
The problem is equivalent to producing two algorithms, init 
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The input to init, is an array p representing a probability 
distribution: 

n-1 

Pj 2 0 and c p j  = 1 
j = O  

The effect of init is the initialization of rand to a function 
of no arguments (the behavior of rand depends only on 
internal state) which returns an integer j from the set 
(0 , .  . . , n - 1} with probability p j .  

If the array a contains the range of [ such that the probability 
of [ = aj is p j ,  then a sample value for [ is obtained by a r a n d .  

111. ALGORITHMS 

We assume the existence of the function uniform(n) which 
returns a sample value for a random variable uniformly dis- 
tributed over the real interval [0, n)  in constant time. We also 
assume the existence of the function 1.1 which returns the floor 
of its argument in constant time. 

A. Rand 

Our description of rand follows that given by Knuth [2 ] .  
Let prob and alias be arrays which are initialized by init. The 
body of rand is 

U =uniform(n) 

If ( U  - j )  5 probj then return 
j else return aliasj .  

j = 1.1 

Clearly, this algorithm executes in constant time. 

B. Init 

Our version of init proceeds in two stages. The first stage 
divides the indices of the input into two arrays, small and 
large, via the rule: 

p,  > 1 / n  + j E large 
p j  5 l / n  + j  E small. 

The second stage uses the probability distribution p together 
with small and large to initialize the arrays prob and alias. 
The idea behind this stage is motivated by an analysis of rand. 

There are two situations in which rand returns j :  
If j = 1.1 and ( U  - j )  5 probj then j is returned. This 
situation occurs with probability 

1 
- probj 
n 
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If i = [ U ] ,  ( U  - i) > prob; , and alias; = j then j is An invariant of the first while loop of init is that, for all j :  
returned. This situation occurs with probability 

~ n-1 

1 1 -prob;.  
n=o 

, = a l m s ,  

First, suppose that j E small ,  and probj were n p j .  If every 
entry of alias is a member of large,  then only the first 
situation can occur. Hence rand returns .j with probability 

where the arrays prob and alias are initially uninitialized and 
V is their domain. At entry 2) = 0, so the invariant becomes: 

i p r o b j  = p j ,  as required. 
Second, suppose that k E large,  and that when the assign- f 2 (1 - prob;) + p j  = Probability [E = aj]. 

r = O  ment prob, = npi was made for the previously considered 3 = a l * a s ,  

j E small, the entry aliasj was also defined to be k .  Then 
rand could return k with probability (1 - probj),  which is 
a term of the second situation. If pk is then redefined to take 
this into account via the assignment pk = pk  - (1 - probj),  
we could iterate these two procedures after reclassifying k as 
to being small or large. 

Note that the sum is empty and hence 0, because the condition 
j = aliasi is not satisfied when aliasi is undefined. Therefore 
the invariant holds at entry. 

After the body of the while loop has executed, an element 
j of small has been included in the domain V. Hence the 
net change to This idea motivates our definition of init: 

1 = 0 ; s  = 0 
For j = O  to n - 1  
if p j  > i 
then largel = j ; 1 = 1 + 1 
else small ,  = j ; s = s + 1 
While s # 0 and 1 # 0 
s = s - 1 ; j = small, 
l = I - 1 ; k = largel 
probj = n * p j  
aliasj = IC 

if pk > 1 
then large1 = k ; l = l + 1 
else small ,  = k ; s = s + 1 
While s > 0 do s = s - 1 ; probsmallS = 1 
While 1 > 0 do 1 = 1 - 1 ; problaTgel = 1. 

Pk = Pk + ( p j  - i) 

Clearly, init runs in O ( n )  time. The first loop cycles n times. 
The second loop decreases 1 + s on each iteration, and initially 
1 + s = n. The last two loops complete this decrement of 1 
and s to 0. 

IV. CORRECTNESS 

The arrays prob and alias produced by init are different 
from those used by the original algorithm. We are therefore 
obliged to prove the correctness of our solution. 

To allow the use of convenient notation, we first establish 
some conventions. 

An array may be regarded as a partial function which maps 
an index to the corresponding entry. Uninitialized arrays are 
thought of as having empty domain. If a is an array and V 
is its domain, then after an assignment a; = . . e ,  the index i 
is an element of V. 

Let xv be the indicator function of the set V defined by: 

1, if x E 2) 
0, otherwise. 

is zero since prob, = np, .  Moreover, small and large are 
kept disjoint, which implies that j = alias, is not possible. 
Hence the sum 

1 n-l ; (1 -prob,) 
t=0 

,=*l1as,  

also does not change. 

then the invariant at k becomes 
If k is the element of large which was assigned to alias,, 

n-1 
1 - (1 - probi) + p k  = Probability [E = a k ]  

n = O  
k = o l t o s ,  

since the movement of elements is from large to small (if at 
all), and a precondition for k E V is that it was previously 
in small. Note that the new term in this sum corresponds to 
i = j ,  which represents an increase of 

However, pk was redefined by p k  = pk f p j  - i, which cancels 
this increase exactly. We have therefore established the first 
invariant. 

Another invariant of the first while loop is that 
4 - 1  

This invariant holds at entry since s+l = n, and the probability 
array p is initially partitioned by small and large. 

After the body of the while loop has executed, the left- 
hand side has been decreased by p j  for j = small(s-l) ,  and 
by - p j  through the assignment pk = pk + p j  - i for 
k = large(l-1). Since s+l decreases by 1, the right-hand side 
also decreases by i, which establishes the second invariant. 

A consequence of this invariant is that the termination 
condition of the first while loop is equivalent to the single 
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condition 1 = 0. This follows from the observation that 
otherwise, 

1-1 

k=O 

which violates the invariant when s = 0. Moreover, at 
termination of the first while loop, we have: 

since 

and when 1 = 0, the invariant is: 

If s = 0, then neither of the second or third while loops of 
init are entered, and the first invariant reduces to: 

1 1 *-l  
-prob, + - (1 - prob,) = Probability[( = U,] 

z=o 
3 = a l , o s t  

which finishes the proof of correctness for this case. 

invariant, since p,  = 
assignment prob, = 1 leaves 

If s > 0, then the second while loop maintains the first 
for j = smalls-l implies that the 

unchanged. After execution of the second while loop, s = 0 
and the third while loop is not entered. The proof of correctness 
is finished as before by appealing to the first invariant. 

V. ROUNDING ERRORS 
The reason for including in init the theoretically unnecessary 

termination condition s = 0 and the third while loop which 
is theoretically never entered is that floating point rounding 
errors may lead to the misclassification of indices onto small 
or large. 

The analysis of the previous section shows that if the first 
while loop is terminated by s = 0, then the remaining elements 
of large (in positions 0 through 1 - 1) are misclassified. They 
are therefore treated in an appropriate manner (as if they were 
in smal l )  by the third while loop. 

VI. OPTIMIZATION 
In this section we point out some features of our algorithm 

which, depending on the user’s situation, may be exploited to 
significantly reduce running time. 

Subtractive or linear congruential methods for random 
number generation are fastest when the modulus is 2w0rdsize. 
In some applications a resolution of what typically is 32 bits 
in the random number generator is not sufficient. In this case, 
several calls to a 32-bit random integer generator may be used 

to obtain the required precision. Given this situation, the body 
of rand becomes: 

obtain the required number if random bits 
‘U = (some of the bits) * constantl 
j = [(the reset of the bits) * constantzJ 
If ti 5 probj then return j else return aliusj 

where constantl is chosen so that v E [0,1), and constuntz 
is chosen so that j E (0:. . . , n - 1). The reader is cautioned 
to exercise care in choosing random bits; for example, linear 
congruential methods yield low-order bits with small cycle 
times. Note that, according to init and rand, the comparison 
w 5 probj  above has the form: 

(some of the bits) * constant1 5 (probj = n * p j )  

where the assignment takes place in init. Therefore redefin- 
ing constantl (by dividing it by n) makes the assignment 
probj = n * p j  unnecessary and allows prob and p to be the 
same array! The appropriate adjustment to the last two while 
loops (of init) is to assign 1/71, instead of 1. 

Further optimizations follow by exploiting a homogeneity 
property of init. Suppose that q is an array such that: 

q J  
1-)3 = 

Note that 

and 

It follows that if the constant 1/n in init is replaced by 
n-l Cp,, and if constantl is redefined (multiply it by Cpj), 
then the array p need not sum to one! This is very significant 
because it is almost always faster to compute the direction 
of a probability vector than it is to determine the actual 
probabilities. 

A final optimization is to eliminate the stacks small, large 
and their associated variables s, e which are used by init, and 
hence to also eliminate the initial sorting of indices of p .  This 
is accomplished by letting j and IC be indices into p such that 
p,  would be classified as small (less than n-l E p , ) ,  and pk  

would be classified as large (simply increment j and k until 
they point at appropriate objects). The detaiis involved (there 
are a few to consider, and a temporary variable is needed for 
what was previously the top of small) are all straightforward 
and make an easy exercise for the reader. 
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