Tannic acid is a specific commercial form of tannin, a type of polyphenol. Its weak acidity (pKa around 6) is due to the numerous phenol groups in the structure. The chemical formula for commercial tannic acid is often given as C76H52O46, which corresponds with decagalloyl glucose, but in fact it is a mixture of polygalloyl glucoses or polygalloyl quinic acid esters with the number of galloyl moieties per molecule ranging from 2 up to 12 depending on the plant source used to extract the tannic acid. Commercial tannic acid is usually extracted from any of the following plant part: Tara pods (Caesalpinia spinosa), gallnuts from Rhus semialata or Quercus infectoria or Sicilian Sumac leaves (Rhus coriaria).
According to the definitions provided in external references such as international pharmacopoeia, Food Chemical Codex and FAO-WHO tannic acid monograph only tannins sourced from the above mentioned plants can be considered as tannic acid. Sometimes extracts from chestnut or oak wood are also described as tannic acid but this is an incorrect use of the term. It is a yellow to light brown amorphous powder which is highly soluble in water; one gram dissolves in 0.35 mL of water.
While 'tannic acid' is a specific type of 'tannin' (plant polyphenol), the two terms are sometimes (incorrectly) used interchangeably. The long standing misuse of the terms, and its inclusion in scholarly articles have compounded the confusion. This is particularly widespread in relation to green tea and black tea. Although tea contains tannin and various types of polyphenols, "contrary to widespread belief, tea does not contain tannic acid."
Tannic acid is not an appropriate standard for any type of tannin analysis because of its poorly defined composition.
The quercitannic acid molecule is also present in quercitron, a yellow dye obtained from the bark of the Eastern black oak (Quercus velutina), a forest tree indigenous in North America. It is described as as a yellowish brown amorphous substance.
In 1838, Jöns Jacob Berzelius wrote that quercitannate is used to dissolve morphine.
In 1865 in the fifth volume of "A dictionary of chemistry", Henry Watts wrote :
It exhibits with ferric salts the same reactions as gallotannic acid. It differs however from the latter in not being convertible into gallic acid, and not yielding pyrogallic acid by dry distillation. It is precipitated by sulfuric acid in red flocks. (Stenhouse, Ann. Ch. Pharm. xlv. 16.) According to Rochleder (ibid lxiii. 202), the tannic acid of black tea is the same as that of oak-bark.
In 1880, Etti gave for it the molecular formula C17H16O9. He described it as an unstable substance, having a tendency to give off water to form anhydrides (called phlobaphenes), one of which is called oak-red (C34H30O17). For him, it was not a glycoside.
In Allen’s "Commercial Organic Analysis", published in 1912, the formula given was C19H16O10.
Other authors gave other molecular formulas like C28H26O15, while another formula found is C28H24O11.
According to Lowe, two forms of the principle exist - one soluble in water, of the formula C28H28O14, and the other scarcely soluble, C28H24O12. Both are changed by the loss of water into oak red, C28H22O11.
Quercitannic acid was for a time a standard used to assess the phenolic content in spices, given as quercitannic acid equivalent.
Tannic acid is a common mordant used in the dyeing process for cellulose fibers such as cotton, often combined with alum and/or iron. The tannin mordant should be done first as metal mordants combine well with the fiber-tannin complex. However this use has lost considerable interest.
Similarly tannic acid can also be used as an aftertreatment to improve wash fastness properties of acid dyed polyamide. It is also an alternative for fluorcarbon aftertreatments to impart anti-staining properties to polyamide yarn or carpets. However, due to economic considerations currently the only widespread use as textile auxiliary is the use as an agent to improve chlorine fastness (i.e. resistance against dye bleaching due to cleaning with hypochlorite solutions in high-end polyamide 6,6-based carpets and swimwear.
A particular and unique nich textile application of tannic acid is the activation of flock, which is basically an anti-static aftertreatment.
Tannic acid is used in the conservation of ferrous (iron based) metal objects to passivate and inhibit corrosion. Tannic acid reacts with the corrosion products to form a more stable compound, thus preventing further corrosion from taking place. After treatment the tannic acid residue is generally left on the object so that if moisture reaches the surface the tannic acid will be rehydrated and prevent or slow any corrosion. Tannic acid treatment for conservation is very effective and widely used but it does have a significant visual effect on the object, turning the corrosion products black and any exposed metal dark blue. It should also be used with care on objects with copper alloy components as the tannic acid can have a slight etching effect on these metals.
Tannic acid is also found in commercially available iron/steel corrosion treatments such as Hammerite Kurust.
In many parts of the world such uses are permitted. In the United States, tannic acid is classified as generally recognized as safe by the Food and Drug Administration.
According to EU directive 89/107/EEC tannic acid cannot be considered as a food additive and consequently does not hold an E number. Under directive 89/107/EEC tannic acid can be referred to as a food ingredient. The E-number E181 is sometimes incorrectly used to refer to tannic acid; this in fact refers to the INS number assigned to tannic acid under the FAO-WHO Codex Alimentarius system.
The introduction of tannic acid treatment of severe burn injuries in the 1920s significantly reduced mortality rates During World War I, tannic acid dressings were prescribed to treat "burns, whether caused by incendiary bombs, mustard gas or lewisite... Where tannic acid is not available, strong, lukewarm tea is a good substitute." After the war this use was abandoned due to the development of more modern treatment regimes.
Today tannic acid is still used in pharmaceutical applications to produce albumine tannate which is used as an anti-diarrhea agent. Tannic acid is also used to produce tannate salts of certain anti-histamins and anti-tussives to impart increased stability or slow release properties to the API (active pharmaceutical ingredient).
There are many unverified and/or dubious claims about tannic acid, such as that soaking feet in tannic acid (or strong tea) can treat or prevent blisters; foot odor; and rough, dry feet. Other claims about tannic acid seem to either add to, or have been created by the confusion between tannic acid and tannin. One example is that "A popular home remedy to stop the bleeding after wisdom tooth extraction is applying tea bags in the back of the jaws and biting down, given that the tannic acid [sic] in tea helps to clot blood."
Tannic acid glycerite is used for local application.
Category:Hydrolysable tannins Category:Benzoates Category:Astringent flavors Category:Pyrogallols
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.