Packet switching contrasts with another principal networking paradigm, circuit switching, a method which sets up a limited number of dedicated connections of constant bit rate and constant delay between nodes for exclusive use during the communication session. In case of traffic fees, for example in cellular communication services, circuit switching is characterized by a fee per time unit of connection time, even when no data is transferred, while packet switching is characterized by a fee per unit of information.
Two major packet switching modes exist; (1) connectionless packet switching, also known as datagram switching, and (2) connection-oriented packet switching, also known as virtual circuit switching. In the first case each packet includes complete addressing or routing information. The packets are routed individually, sometimes resulting in different paths and out-of-order delivery. In the second case a connection is defined and preallocated in each involved node during a connection phase before any packet is transferred. The packets include a connection identifier rather than address information, and are delivered in order. See below.
Packet mode communication may be utilized with or without intermediate forwarding nodes (packet switches or routers). In all packet mode communication, network resources are managed by statistical multiplexing or dynamic bandwidth allocation in which a communication channel is effectively divided into an arbitrary number of logical variable-bit-rate channels or data streams. Statistical multiplexing, packet switching and other store-and-forward buffering introduces varying latency and throughput in the transmission. Each logical stream consists of a sequence of packets, which normally are forwarded by the multiplexers and intermediate network nodes asynchronously using first-in, first-out buffering. Alternatively, the packets may be forwarded according to some scheduling discipline for fair queuing, traffic shaping or for differentiated or guaranteed quality of service, such as weighted fair queuing or leaky bucket. In case of a shared physical medium, the packets may be delivered according to some packet-mode multiple access scheme.
Leonard Kleinrock conducted early research in queueing theory which would be important in packet switching, and published a book in the related field of digital message switching (without the packets) in 1961; he also later played a leading role in building and management of the world's first packet switched network, the ARPANET.
Baran developed the concept of message block switching during his research at the RAND Corporation for the US Air Force into survivable communications networks, first presented to the Air Force in the summer of 1961 as briefing B-265 then published as RAND Paper P-2626 in 1962 and then including and expanding somewhat within a series of eleven papers titled On Distributed Communications in 1964. Baran's P-2626 paper described a general architecture for a large-scale, distributed, survivable communications network. The paper focuses on three key ideas: first, use of a decentralized network with multiple paths between any two points; and second, dividing complete user messages into what he called message blocks (later called packets); then third, delivery of these messages by store and forward switching.
Baran's study made its way to Robert Taylor and J.C.R. Licklider at the Information Processing Technology Office, both wide-area network evangelists, and it helped influence Lawrence Roberts to adopt the technology when Taylor put him in charge of development of the ARPANET.
Baran's work was similar to the research performed independently by Donald Davies at the National Physical Laboratory, UK. In 1965, Davies developed the concept of packet-switched networks and proposed development of a UK wide network. He gave a talk on the proposal in 1966, after which a person from the Ministry of Defence (MoD) told him about Baran's work. A member of Davies' team met Lawrence Roberts at the 1967 ACM Symposium on Operating System Principles, bringing the two groups together.
Interestingly, Davies had chosen some of the same parameters for his original network design as Baran, such as a packet size of 1024 bits. In 1966 Davies proposed that a network should be built at the laboratory to serve the needs of NPL and prove the feasibility of packet switching. The NPL Data Communications Network entered service in 1970. Roberts and the ARPANET team took the name "packet switching" itself from Davies's work.
The first computer network and packet switching network deployed for computer resource sharing was the Octopus Network at the Lawrence Livermore National Laboratory that began connecting four Control Data 6600 computers to several shared storage devices (including an IBM 2321 Data Cell in 1968 and an IBM Photostore in 1970) and to several hundred Teletype Model 33 ASR terminals for time sharing use starting in 1968.
In 1973 Vint Cerf and Bob Kahn wrote the specifications for Transmission Control Protocol (TCP), an internetworking protocol for sharing resources using packet-switching among the nodes.
In connection oriented networks, each packet is labeled with a connection ID rather than an address. Address information is only transferred to each node during a connection set-up phase, when the route to the destination is discovered and an entry is added to the switching table in each network node through which the connection passes. The signalling protocols used allow the application to specify its requirements and the network to specify what capacity etc. is available, and acceptable values for service parameters to be negotiated. Routing a packet is very simple, as it just requires the node to look up the ID in the table. The packet header can be small, as it only needs to contain the ID and any information (such as length, timestamp, or sequence number) which is different for different packets.
In connectionless networks, each packet is labeled with a destination address, source address, and port numbers; it may also be labeled with the sequence number of the packet. This precludes the need for a dedicated path to help the packet find its way to its destination, but means that much more information is needed in the packet header, which is therefore larger, and this information needs to be looked up in power-hungry content-addressable memory. Each packet is dispatched and may go via different routes; potentially, the system has to do as much work for every packet as the connection-oriented system has to do in connection set-up, but with less information as to the application's requirements. At the destination, the original message/data is reassembled in the correct order, based on the packet sequence number. Thus a virtual connection, also known as a virtual circuit or byte stream is provided to the end-user by a transport layer protocol, although intermediate network nodes only provides a connectionless network layer service.
The most well-known use of packet switching is the Internet and most local area networks. The Internet is implemented by the Internet Protocol Suite using a variety of Link Layer technologies. For example, Ethernet and Frame Relay are common. Newer mobile phone technologies (e.g., GPRS, I-mode) also use packet switching.
X.25 is a notable use of packet switching in that, despite being based on packet switching methods, it provided virtual circuits to the user. These virtual circuits carry variable-length packets. In 1978, X.25 provided the first international and commercial packet switching network, the International Packet Switched Service (IPSS). Asynchronous Transfer Mode (ATM) also is a virtual circuit technology, which uses fixed-length cell relay connection oriented packet switching.
Datagram packet switching is also called connectionless networking because no connections are established. Technologies such as Multiprotocol Label Switching (MPLS) and the resource reservation protocol (RSVP) create virtual circuits on top of datagram networks. Virtual circuits are especially useful in building robust failover mechanisms and allocating bandwidth for delay-sensitive applications.
MPLS and its predecessors, as well as ATM, have been called "fast packet" technologies. MPLS, indeed, has been called "ATM without cells". Modern routers, however, do not require these technologies to be able to forward variable-length packets at multigigabit speeds across the network.
Category:Packets (information technology) Category:Computer networking Category:History of the Internet
ar:تحويل الطرود ca:Commutació de paquets cs:Přepojování paketů de:Paketvermittlung el:Μεταγωγή πακέτου es:Conmutación de paquetes eu:Fardelen konmutazioa fa:راهگزینی بسته کوچک fr:Commutation de paquets ga:Lascadh paicéad gl:Conmutación de paquetes id:Sambungan paket ko:패킷 교환 ia:Commutation de pacchettos it:Commutazione di pacchetto he:מיתוג מנות mk:Комутација на пакети ms:Pensuisan paket nl:Pakketgeschakeld netwerk ja:パケット通信 no:Pakkesvitsjing pl:Komutacja pakietów pt:Comutação de pacotes ro:Comutație de pachete sk:Prepínanie paketov fi:Pakettikytkentä sv:Paketförmedlande nätverk th:แพกเกตสวิตชิง uk:Комутація пакетів ur:رزمی بدیل vi:Chuyển gói zh:分组交换This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.