Emissions trading is a market-based approach used to control pollution by providing economic incentives for achieving reductions in the emissions of pollutants.
A central authority (usually a governmental body) sets a limit or cap on the amount of a pollutant that can be emitted. The limit or cap is allocated or sold to firms in the form of emissions permits which represent the right to emit or discharge a specific volume of the specified pollutant. Firms are required to hold a number of permits (or carbon credits) equivalent to their emissions. The total number of permits cannot exceed the cap, limiting total emissions to that level. Firms that need to increase their emission permits must buy permits from those who require fewer permits.
The transfer of permits is referred to as a trade. In effect, the buyer is paying a charge for polluting, while the seller is being rewarded for having reduced emissions. Thus, in theory, those who can reduce emissions most cheaply will do so, achieving the pollution reduction at the lowest cost to society.
There are active trading programs in several air pollutants. For greenhouse gases the largest is the European Union Emission Trading Scheme. In the United States there is a national market to reduce acid rain and several regional markets in nitrogen oxides. Markets for other pollutants tend to be smaller and more localized.
A cap-and-trade system constrains the aggregate emissions of regulated sources by creating a limited number of tradable emission allowances, which emission sources must secure and surrender in number equal to their emissions.
In an emissions trading or cap-and-trade scheme, a limit on access to a resource (the cap) is defined and then allocated among users in the form of permits. Compliance is established by comparing actual emissions with permits surrendered including any permits traded within the cap.
Under a tradable permit system, an allowable overall level of pollution is established and allocated among firms in the form of permits. Firms that keep their emission levels below their allotted level may sell their surplus permits to other firms or use them to offset excess emissions in other parts of their facilities.
Climate exchanges have been established to provide a spot market in allowances, as well as futures and options market to help discover a market price and maintain liquidity. Carbon prices are normally quoted in Euros per tonne of carbon dioxide or its equivalent (CO2e). Other greenhouse gasses can also be traded, but are quoted as standard multiples of carbon dioxide with respect to their global warming potential. These features reduce the quota's financial impact on business, while ensuring that the quotas are met at a national and international level.
Currently there are six exchanges trading in carbon allowances: the Chicago Climate Exchange, European Climate Exchange, NASDAQ OMX Commodities Europe, PowerNext, Commodity Exchange Bratislava and the European Energy Exchange. NASDAQ OMX Commodities Europe listed a contract to trade offsets generated by a CDM carbon project called Certified Emission Reductions. Many companies now engage in emissions abatement, offsetting, and sequestration programs to generate credits that can be sold on one of the exchanges. At least one private electronic market has been established in 2008: CantorCO2e. Carbon credits at Commodity Exchange Bratislava are traded at special platform - Carbon place.
Managing emissions is one of the fastest-growing segments in financial services in the City of London with a market estimated to be worth about €30 billion in 2007. Louis Redshaw, head of environmental markets at Barclays Capital predicts that "Carbon will be the world's biggest commodity market, and it could become the world's biggest market overall."
The development of emissions trading over the course of its history can be divided into four phases:
# Gestation: Theoretical articulation of the instrument (by Coase, Crocker, Dales, Montgomery etc.) and, independent of the former, tinkering with "flexible regulation" at the US Environmental Protection Agency. # Proof of Principle: First developments towards trading of emission certificates based on the "offset-mechanism" taken up in Clean Air Act in 1977. # Prototype: Launching of a first "cap-and-trade" system as part of the US Acid Rain Program in Title IV of the 1990 Clean Air Act, officially announced as a paradigm shift in environmental policy, as prepared by "Project 88", a network-building effort to bring together environmental and industrial interests in the US. # Regime formation: branching out from the US clean air policy to global climate policy, and from there to the European Union, along with the expectation of an emerging global carbon market and the formation of the "carbon industry".
In the United States, the "acid rain"-related emission trading system was principally conceived by C. Boyden Gray, a G.H.W. Bush administration attorney. Gray worked with the Environmental Defense Fund (EDF), who worked with the EPA to write the bill that became law as part of the Clean Air Act of 1990. The new emissions cap on NOx and SO2 gases took effect in 1995, and according to Smithsonian Magazine, those acid rain emissions dropped 3 million tons that year.
In the United States, most polling shows large support for emissions trading (oftentimes referred to as cap-and-trade). This majority support can be seen in polls conducted by Washington Post/ABC News, Zogby International and Yale University.
According to PolitiFact, it's a misconception that emissions trading is unpopular in the United States because of earlier polls from Zogby International and Rasmussen which misleadingly include "new taxes" (taxes aren't part of emissions trading) or high energy cost estimates.
The textbook emissions trading program can be called a "cap-and-trade" approach in which an aggregate cap on all sources is established and these sources are then allowed to trade amongst themselves to determine which sources actually emit the total pollution load. An alternative approach with important differences is a baseline and credit program.
In a baseline and credit program polluters that are not under an aggregate cap can create credits, usually called offsets, by reducing their emissions below a baseline level of emissions. Such credits can be purchased by polluters that do have a regulatory limit.
Regulation by Cap-and-trade emissions trading can be compared to emissions fees or environmental tax approaches under a number of possible criteria.
Responsiveness to inflation: In the case of inflation, cap-and-trade is at an advantage over emissions fees because it adjusts to the new prices automatically and no legislative or regulatory action is needed.Responsiveness to cost changes: It is difficult to tell which is better between cap-and-trade and emissions fees therefore it might be a better option to combine the two resulting in the creation of a safety valve price (a price set by the government at which polluters can purchase additional permits beyond the cap).
Responsiveness to uncertainty: As with cost changes, in a world of uncertainty, it is not clear whether emissions fees or cap-and-trade systems are more efficient—it basically depends on how fast the marginal social benefits of reducing pollution fall with the amount of cleanup (e.g. whether inelastic or elastic marginal social benefit schedule).
Cap-and-Trade versus Command-and-Control Regulation: Unlike emissions fees and cap-and-trade which are incentive based regulations, command-and-control regulations take a variety of forms and are much less flexible. An example of this is a performance standard which sets an emissions goal for each polluter that is fixed and therefore the burden of reducing pollution cannot be shifted to the firms that can achieve it more cheaply. So, as a result, performance standards are unlikely to be as cost effective as cap-and-trade emissions trading.
The policy framework should be different for regional pollutants (e.g. SO2 and NOX, and also mercury) because the impact exerted by these pollutants may not be the same in all locations. The same amount of a regional pollutant can exert a very high impact in some locations and a low impact in other locations, so it does actually matter where the pollutant is released. This is known as the Hot Spot problem.
A Lagrange framework is commonly used to determine the least cost of achieving an objective, in this case the total reduction in emissions required in a year. In some cases it is possible to use the Lagrange optimization framework to determine the required reductions for each country (based on their MAC) so that the total cost of reduction is minimized. In such a scenario, the Lagrange multiplier represents the market allowance price (P) of a pollutant, such as the current market allowance price of emissions in Europe and the USA.
Countries face the market allowance price that exists in the market that day, so they are able to make individual decisions that would minimize their costs while at the same time achieving regulatory compliance. This is also another version of the Equi-Marginal Principle, commonly used in economics to choose the most economically efficient decision.
An emission cap and permit trading system is a quantity instrument because it fixes the overall emission level (quantity) and allows the price to vary. Uncertainty in future supply and demand conditions (market volatility) coupled with a fixed number of pollution credits creates an uncertainty in the future price of pollution credits, and the industry must accordingly bear the cost of adapting to these volatile market conditions. The burden of a volatile market thus lies with the industry rather than the controlling agency, which is generally more efficient. However, under volatile market conditions, the ability of the controlling agency to alter the caps will translate into an ability to pick "winners and losers" and thus presents an opportunity for corruption.
In contrast, an emission tax is a price instrument because it fixes the price while the emission level is allowed to vary according to economic activity. A major drawback of an emission tax is that the environmental outcome (e.g. a limit on the amount of emissions) is not guaranteed. On one hand, a tax will remove capital from the industry, suppressing possibly useful economic activity, but conversely, the polluter will not need to hedge as much against future uncertainty since the amount of tax will track with profits. The burden of a volatile market will be borne by the controlling (taxing) agency rather than the industry itself, which is generally less efficient. An advantage is that, given a uniform tax rate and a volatile market, the taxing entity will not be in a position to pick "winners and losers" and the opportunity for corruption will be less.
Assuming no corruption and assuming that the controlling agency and the industry are equally efficient at adapting to volatile market conditions, the best choice depends on the sensitivity of the costs of emission reduction, compared to the sensitivity of the benefits (i.e., climate damages avoided by a reduction) when the level of emission control is varied.
Because there is high uncertainty in the compliance costs of firms, some argue that the optimum choice is the price mechanism. However, the burden of uncertainty cannot be eliminated, and in this case it is shifted to the taxing agency itself.
Some scientists have warned of a threshold in atmospheric concentrations of carbon dioxide beyond which a run-away warming effect could take place, with a large possibility of causing irreversible damages. If this is a conceivable risk then a quantity instrument could be a better choice because the quantity of emissions may be capped with a higher degree of certainty. However, this may not be true if this risk exists but cannot be attached to a known level of GHG concentration or a known emission pathway.
A third option, known as a safety valve, is a hybrid of the price and quantity instruments. The system is essentially an emission cap and permit trading system but the maximum (or minimum) permit price is capped. Emitters have the choice of either obtaining permits in the marketplace or purchasing them from the government at a specified trigger price (which could be adjusted over time). The system is sometimes recommended as a way of overcoming the fundamental disadvantages of both systems by giving governments the flexibility to adjust the system as new information comes to light. It can be shown that by setting the trigger price high enough, or the number of permits low enough, the safety valve can be used to mimic either a pure quantity or pure price mechanism.
All three methods are being used as policy instruments to control greenhouse gas emissions: the EU-ETS is a quantity system using the cap and trading system to meet targets set by National Allocation Plans; Denmark has a price system using a carbon tax (World Bank, 2010, p. 218), while China uses the CO2 market price for funding of its Clean Development Mechanism projects, but imposes a safety valve of a minimum price per tonne of CO2.
In the Kyoto Protocol, Annex I countries are subject to caps on emissions, but non-Annex I countries are not. Barker et al.. (2007) assessed the literature on leakage. The leakage rate is defined as the increase in CO2 emissions outside of the countries taking domestic mitigation action, divided by the reduction in emissions of countries taking domestic mitigation action. Accordingly, a leakage rate greater than 100% would mean that domestic actions to reduce emissions had had the effect of increasing emissions in other countries to a greater extent, i.e., domestic mitigation action had actually led to an increase in global emissions.
Estimates of leakage rates for action under the Kyoto Protocol ranged from 5 to 20% as a result of a loss in price competitiveness, but these leakage rates were viewed as being very uncertain. For energy-intensive industries, the beneficial effects of Annex I actions through technological development were viewed as possibly being substantial. This beneficial effect, however, had not been reliably quantified. On the empirical evidence they assessed, Barker et al.. (2007) concluded that the competitive losses of then-current mitigation actions, e.g., the EU ETS, were not significant.
A general perception among developing countries is that discussion of climate change in trade negotiations could lead to "green protectionism" by high-income countries (World Bank, 2010, p. 251). Tariffs on imports ("virtual carbon") consistent with a carbon price of $50 per ton of CO2 could be significant for developing countries. World Bank (2010) commented that introducing border tariffs could lead to a proliferation of trade measures where the competitive playing field is viewed as being uneven. Tariffs could also be a burden on low-income countries that have contributed very little to the problem of climate change.
The Protocol defines several mechanisms ("flexible mechanisms") that are designed to allow Annex I countries to meet their emission reduction commitments (caps) with reduced economic impact (IPCC, 2007).
Under Article 3.3 of the Kyoto Protocol, Annex 1 Parties may use GHG removals, from afforestation and reforestation (forest sinks) and deforestation (sources) since 1990, to meet their emission reduction commitments.
Annex 1 Parties may also use International Emissions Trading (IET). Under the treaty, for the 5-year compliance period from 2008 until 2012, nations that emit less than their quota will be able to sell Assigned amount units to nations that exceed their quota. It is also possible for Annex I countries to sponsor carbon projects that reduce greenhouse gas emissions in other countries. These projects generate tradable carbon credits that can be used by Annex I countries in meeting their caps. The project-based Kyoto Mechanisms are the Clean Development Mechanism (CDM) and Joint Implementation (JI).
The CDM covers projects taking place in non-Annex I countries, while JI covers projects taking place in Annex I countries. CDM projects are supposed to contribute to sustainable development in developing countries, and also generate "real" and "additional" emission savings, i.e., savings that only occur thanks to the CDM project in question (Carbon Trust, 2009, p. 14). Whether or not these emission savings are genuine is, however, difficult to prove (World Bank, 2010, pp. 265–267).
On 4 June 2007, former Prime Minister John Howard announced an Australian Carbon Trading Scheme to be introduced by 2012, but opposition parties called the plan "too little, too late". On 24 November 2007 Howard's coalition government lost a general election and was succeeded by the Labor Party, with Kevin Rudd taking over as prime minister. Prime Minister Rudd announced that a cap-and-trade emissions trading scheme would be introduced in 2010, however this scheme was initially delayed by a year to mid-2011, and in May 2010, it was subsequently delayed further until 2013.
Australia's Commonwealth, State and Territory Governments commissioned the Garnaut Climate Change Review, a study by Professor Ross Garnaut on the mechanism of a potential emissions trading scheme. Its interim report was released on 21 February 2008. It recommended an emissions trading scheme that includes transportation but not agriculture, and that emissions permits should be sold competitively and not allocated free to carbon polluters. It recognised that energy prices will increase and that low income families will need to be compensated. It recommended more support for research into low emissions technologies and a new body to oversee such research. It also recognised the need for transition assistance for coal mining areas.
In response to Garnaut's draft report, the Rudd Labor government issued a Green Paper on 16 July that described the intended design of the actual trading scheme.
Subsequent to this, the emission trading scheme proposed by the Government was defeated in the Senate, with the Opposition, the Greens and two independent senators opposing the proposed legislation.
The New Zealand Emissions Trading Scheme (NZ ETS) is a national all-sectors all-greenhouse gases uncapped emissions trading scheme first legislated in September 2008 by the Fifth Labour Government of New Zealand and amended in November 2009 by the Fifth National Government of New Zealand.
Although the NZ ETS covers all-sectors and all-gases, individual sectors of the economy have different entry dates when their obligations to report emissions and surrender emission units have effect. Forestry, a net sink which contributed removals of 14 Mts of CO2e in 2008 or 19% of NZ's 2008 emissions, entered on 1 January 2008. Emissions from stationary energy, industrial and liquid fossil fuel sectors (34 Mts in 2008, 45% of 2008 emissions, entered the NZ ETS on 1 July 2010. Agricultural emissions (mainly 35 Mts of methane and nitrous oxide emissions from pastoral ruminants or 47% of 2008 emissions) do not enter the scheme until 1 January 2015.
Tradable emission units will be issued by free allocation to emitters, with no auctions in the short term. The fishing sector will receive free units on a historic basis, 90 per cent of their 2005 emissions (bullet points 9 & 10 MfE September 2009). Pre-1990 forests will receive a fixed free allocation of 60 emissions units per hectare. Allocation to emissions-intensive industry, and agriculture will be provided on an output-intensity basis, which will be based on the industry average emissions per unit of output and will be uncapped. Bertram and Terry (2010, p 16 ) state that as there is no 'cap' on emissions, the NZ ETS is not a cap and trade scheme as understood in the economics literature.
A transition period will operate from 1 July 2010 until 31 December 2012. During this period the price of New Zealand Emissions Units (NZUs) will be capped at NZ$25. Also, one unit will only need to be surrendered for every two tonnes of carbon dioxide equivalent emissions, effectively reducing the carbon price to NZ$12.50 per tonne (MfE 2009, second bullet point).
Section 3 of the Climate Change Response Act 2002 (the Act) defines the purpose of the Act as to reduce emissions from business-as-usual-levels and to fulfill New Zealand's international obligations under the United Nations Frame Work Convention on Climate Change (UNFCCC) and the Kyoto Protocol. Some stakeholders have criticized the New Zealand Emissions Trading Scheme for its generous free allocations of emission units and the lack of a carbon price signal (the Parliamentary Commissioner for the Environment), and being ineffective in reducing emissions (Greenpeace NZ).
After voluntary trials in the UK and Denmark, Phase I commenced operation in January 2005 with all 15 (now 25 of the 27) member states of the European Union participating. The program caps the amount of carbon dioxide that can be emitted from large installations with a net heat supply in excess of 20 MW, such as power plants and carbon intensive factories and covers almost half (46%) of the EU's Carbon Dioxide emissions. Phase I permits participants to trade amongst themselves and in validated credits from the developing world through Kyoto's Clean Development Mechanism.
During Phases I and II, allowances for emissions have typically been given free to firms, which has resulted in them getting windfall profits (CCC, 2008, p. 149). Ellerman and Buchner (2008) (referenced by Grubb et al.., 2009, p. 11) suggested that during its first two years in operation, the EU ETS turned an expected increase in emissions of 1-2 percent per year into a small absolute decline. Grubb et al.. (2009, p. 11) suggested that a reasonable estimate for the emissions cut achieved during its first two years of operation was 50-100 MtCO2 per year, or 2.5-5 percent.
A number of design flaws have limited the effectiveness of scheme (Jones et al.., 2007, p. 64). In the initial 2005-07 period, emission caps were not tight enough to drive a significant reduction in emissions (CCC, 2008, p. 149). The total allocation of allowances turned out to exceed actual emissions. This drove the carbon price down to zero in 2007. This oversupply reflects the difficulty in predicting future emissions which is necessary in setting a cap.
Phase II saw some tightening, but the use of JI and CDM offsets was allowed, with the result that no reductions in the EU will be required to meet the Phase II cap (CCC, 2008, pp. 145, 149). For Phase II, the cap is expected to result in an emissions reduction in 2010 of about 2.4% compared to expected emissions without the cap (business-as-usual emissions) (Jones et al.., 2007, p. 64). For Phase III (2013–20), the European Commission has proposed a number of changes, including:
In January 2008 Norway, Iceland, and Lichtenstein, joined the European Union Emissions Trading System (EU ETS) according to a publication from the European Commission. The Norwegian Ministry of the Environment has also released its draft National Allocation Plan which provides a carbon cap-and-trade of 15 million metric tonnes of CO2, 8 million of which are set to be auctioned. According to the OECD Economic Survey of Norway 2010, the nation "has announced a target for 2008-12 10% below its commitment under the Kyoto Protocol and a 30% cut compared with 1990 by 2020."
In 1997, the State of Illinois adopted a trading program for volatile organic compounds in most of the Chicago area, called the Emissions Reduction Market System. Beginning in 2000, over 100 major sources of pollution in eight Illinois counties began trading pollution credits.
In 2003, New York State proposed and attained commitments from nine Northeast states to form a cap-and-trade carbon dioxide emissions program for power generators, called the Regional Greenhouse Gas Initiative (RGGI). This program launched on January 1, 2009 with the aim to reduce the carbon "budget" of each state's electricity generation sector to 10% below their 2009 allowances by 2018.
Also in 2003, U.S. corporations were able to trade CO2 emission allowances on the Chicago Climate Exchange under a voluntary scheme. In August 2007, the Exchange announced a mechanism to create emission offsets for projects within the United States that cleanly destroy ozone-depleting substances.
Also in 2003, the Environmental Protection Agency (EPA) began to administer the NOx Budget Trading Program (NBP)under the NOx State Implementation Plan (also known as the “NOx SIP Call”) The NOx Budget Trading Program was a market-based cap and trade program created to reduce emissions of nitrogen oxides (NOx) from power plants and other large combustion sources in the eastern United States. NOx is a prime ingredient in the formation of ground-level ozone (smog), a pervasive air pollution problem in many areas of the eastern United States. The NBP was designed to reduce NOx emissions during the warm summer months, referred to as the ozone season, when ground-level ozone concentrations are highest. In March 2008, EPA again strengthened the 8-hour ozone standard to 0.075 parts per million (ppm) from its previous 0.008 ppm.
In 2006, the California Legislature passed the California Global Warming Solutions Act, AB-32, which was signed into law by Governor Arnold Schwarzenegger. Thus far, flexible mechanisms in the form of project based offsets have been suggested for three main project types. The project types include: manure management, forestry, and destruction of ozone-depleted substances. However, a recent ruling from Judge Ernest H. Goldsmith of San Francisco's Superior Court states that the rules governing California's cap-and-trade system were adopted without a proper analysis of alternative methods to reduce greenhouse gas emissions. The tentative ruling, issued on January 24, 2011, argues that the California Air Resources Board violated state environmental law by failing to consider such alternatives. If the decision is made final, the state would not be allowed to implement its proposed cap-and-trade system until the California Air Resources Board fully complies with the California Environmental Quality Act.
Since February 2007, seven U.S. states and four Canadian provinces have joined together to create the Western Climate Initiative (WCI),a regional greenhouse gas emissions trading system. July 2010, a meeting took place to further outline the cap-and-trade system which if accepted would curb greenhouse gas emissions by January 2012.
On November 17, 2008 President-elect Barack Obama clarified, in a talk recorded for YouTube, his intentions for the US to enter a cap-and-trade system to limit global warming.
The 2010 United States federal budget proposes to support clean energy development with a 10-year investment of US $15 billion per year, generated from the sale of greenhouse gas (GHG) emissions credits. Under the proposed cap-and-trade program, all GHG emissions credits would be auctioned off, generating an estimated $78.7 billion in additional revenue in FY 2012, steadily increasing to $83 billion by FY 2019.
The American Clean Energy and Security Act (H.R. 2454), a greenhouse gas cap-and-trade bill, was passed on June 26, 2009, in the House of Representatives by a vote of 219-212. The bill originated in the House Energy and Commerce Committee and was introduced by Rep. Henry A. Waxman and Rep. Edward J. Markey. It was never passed in the Senate. The big Republican wins in the November 2010 U.S. Congressional election have further reduced the chances of a climate bill being adopted during President Barack Obama's first term.
They are typically used like an offsetting scheme or to show corporate responsibility, although their issuance is unregulated, with no national registry to ensure there is no double-counting. However, it is one way that an organization could purchase its energy from a local provider who uses fossil fuels, but back it with a certificate that supports a specific wind or hydro power project.
In terms of dollars, the World Bank has estimated that the size of the carbon market was 11 billion USD in 2005, 30 billion USD in 2006, and 64 billion in 2007.
The Marrakesh Accords of the Kyoto protocol defined the international trading mechanisms and registries needed to support trading between countries, with allowance trading now occurring between European countries and Asian countries. However, while the USA as a nation did not ratify the Protocol, many of its states are now developing cap-and-trade systems and are looking at ways to link their emissions trading systems together, nationally and internationally, to seek out the lowest costs and improve liquidity of the market. However, these states also wish to preserve their individual integrity and unique features. For example, in contrast to the other Kyoto-compliant systems, some states propose other types of greenhouse gas sources, different measurement methods, setting a maximum on the price of allowances, or restricting access to CDM projects. Creating instruments that are not truly fungible would introduce instability and make pricing difficult. Various proposals are being investigated to see how these systems might be linked across markets, with the International Carbon Action Partnership (ICAP) as an international body to help co-ordinate this.
23 multinational corporations came together in the G8 Climate Change Roundtable, a business group formed at the January 2005 World Economic Forum. The group included Ford, Toyota, British Airways, BP and Unilever. On June 9, 2005 the Group published a statement stating that there was a need to act on climate change and stressing the importance of market-based solutions. It called on governments to establish "clear, transparent, and consistent price signals" through "creation of a long-term policy framework" that would include all major producers of greenhouse gases. By December 2007 this had grown to encompass 150 global businesses.
Business in the UK have come out strongly in support of emissions trading as a key tool to mitigate climate change, supported by NGOs. However, not all businesses favor a trading approach. On December 11, 2008, Rex Tillerson, the CEO of Exxonmobil, said a carbon tax is "a more direct, more transparent and more effective approach" than a cap-and-trade program, which he said, "inevitably introduces unnecessary cost and complexity". He also said that he hoped that the revenues from a carbon tax would be used to lower other taxes so as to be revenue neutral.
The International Air Transport Association, whose 230 member airlines comprise 93% of all international traffic, position is that trading should be based on “benchmarking,” setting emissions levels based on industry averages, rather than “grandfathering,” which would use individual companies’ previous emissions levels to set their future permit allowances. They argue grandfathering “would penalise airlines that took early action to modernise their fleets, while a benchmarking approach, if designed properly, would reward more efficient operations".
In some industrial processes emissions can be physically measured by inserting sensors and flowmeters in chimneys and stacks, but many types of activity rely on theoretical calculations for measurement. Depending on local legislation, these measurements may require additional checks and verification by government or third party auditors, prior or post submission to the local regulator.
According to Nordhaus (2007, p. 27), strict enforcement of the Kyoto Protocol is likely to be observed in those countries and industries covered by the EU ETS. Ellerman and Buchner (2007, p. 71) commented on the European Commission's (EC's) role in enforcing scarcity of permits within the EU ETS. This was done by the EC's reviewing the total number of permits that member states proposed that their industries be allocated. Based on institutional and enforcement considerations, Kruger et al. (2007, pp. 130–131) suggested that emissions trading within developing countries might not be a realistic goal in the near-term. Burniaux et al.. (2008, p. 56) argued that due to the difficulty in enforcing international rules against sovereign states, development of the carbon market would require negotiation and consensus-building.
In the popular science magazine New Scientist, Lohmann (2006) argued that trading pollution allowances should be avoided as a climate change policy. Lohman gave these reasons for this view. First, global warming will require more radical change than the modest changes driven by previous pollution trading schemes such as the US SO2 market. Global warming requires "nothing less than a reorganisation of society and technology that will leave most remaining fossil fuels safely underground." Carbon trading schemes have tended to reward the heaviest polluters with 'windfall profits' when they are granted enough carbon credits to match historic production. Carbon trading encourages business-as-usual as expensive long-term structural changes will not be made if there is a cheaper source of carbon credits. Cheap "offset" carbon credits are frequently available from the less developed countries, where they may be generated by local polluters at the expense of local communities.
Lohmann (2006b) supported conventional regulation, green taxes, and energy policies that are "justice-based" and "community-driven." According to Carbon Trade Watch (2009), carbon trading has had a "disastrous track record." The effectiveness of the EU ETS was criticized, and it was argued that the CDM had routinely favoured "environmentally ineffective and socially unjust projects."
Annie Leonard provided a critical view on carbon emissions trading in her 2009 documentary The Story of Cap and Trade. This documentary emphasized three factors: unjust financial advantages to major pollutors resulting from free permits, an ineffectiveness of the system caused by cheating in connection with carbon offsets and a distraction from the search for other solutions.
On the other hand, allocating permits can be used as a measure to protect domestic firms who are internationally exposed to competition (p. 237). This happens when domestic firms compete against other firms that are not subject to the same regulation. This argument in favour of allocation of permits has been used in the EU ETS, where industries that have been judged to be internationally exposed, e.g., cement and steel production, have been given permits for free (4CMR, 2008).
Category:Articles with inconsistent citation formats Category:Climate change policy Category:Economics and climate change Category:Article Feedback Pilot
ca:Comerç de drets d'emissió de:Emissionsrechtehandel es:Comercio de derechos de emisión fr:Bourse du carbone ko:배출권 거래제 id:Perdagangan karbon it:Mercato delle emissioni hu:Kibocsátáskereskedelem nl:Emissiehandel ja:国内排出権取引 pl:Handel emisjami zanieczyszczeń pt:Comércio internacional de emissões ru:Торговля эмиссионными квотами si:විමෝචිතයන් වෙළඳාම fi:Päästökauppa sv:Utsläppshandel th:การค้าขายแลกเปลี่ยนก๊าซเรือนกระจก uk:Торгівля викидами wa:Mecanisse di Diswalpaedje sins Mannixhance zh:排污交易This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.