- Order:
- Duration: 5:20
- Published: 2006-11-07
- Uploaded: 2011-02-18
- Author: wyldfyre108
An electric fence is a barrier that uses electric shocks to deter animals or people from crossing a boundary. The voltage of the shock may have effects ranging from uncomfortable, to painful or even lethal. Most electric fencing is used today for agricultural fencing and other forms of animal control purposes, though it is frequently used to enhance security of sensitive areas, and there exist places where lethal voltages are used.
"Weed burner" fence chargers were popular for a time and featured a longer-duration output pulse that would destroy weeds touching the fence. These were responsible for many grass fires when used during dry weather. Though still available, they have declined in popularity.
Modern "low impedance" fence chargers use a different design. A capacitor is charged by a solid-state circuit – upon contact with a grounded animal or person, the charge is then released using a thyristor or similar solid-state component. Voltage is consistent due to electronic output controls, within the limits of output power. Pulse width is much narrower, often about 10 microseconds. This design works for either battery or mains power sources.
Depending on the area to be fenced and remoteness of its location, fence energizers may be hooked into a permanent electrical circuit, may be run by lead-acid or dry cell batteries, or a smaller battery kept charged by a solar panel. The power consumption of a fence in good condition is low, and so a lead-acid battery powering several hundred metres of fence may last for several weeks on a single charge. For shorter periods dry cell batteries may be used. Some energizers are capable of being powered by more than one source.
The electrified fence itself must be kept insulated from the earth and from any materials that will conduct electricity and ignite or short out the fence. Fencing must therefore avoid vegetation, and cannot be attached directly to wood or metal posts. Typically, wooden or metal posts are driven into the ground and plastic or porcelain insulators are attached to them, or plastic posts are used. The conducting material is then attached to the posts.
An early application of the electric fence was developed in 1936–1937 by New Zealand inventor William "Bill" Gallagher Sr. Built from a car's ignition coil and a magneto set, Gallagher used the device to keep his horse from scratching itself against his car. Gallagher later started a company to improve and market the design. In 1962, another New Zealand inventor, Doug Phillips, invented the non-shortable electric fence based on capacitor discharge. This significantly increased the range an electric fence could be used from a few hundred yards to 35 miles, and reduced the cost of fencing by more than 80%. The non-shortable electric fence was patented by Phillips and by 1964 was manufactured by Plastic Products, a New Zealand firm, under the name "Waikato Electric Fence." This idea was to replace ceramic with plastic insulators. A variety of plastic insulators are now used on farms throughout the world today.
In 1969 Robert B. Cox, a farmer in Adams County, Iowa, invented an improved electric fence bracket and was issued United States Patent No. 3,516,643 on June 23, 1970. This bracket improved electric fences by keeping the wire high enough above the ground and far enough away from the fence to permit grass and weeds growing beneath the wire to be mowed. The brackets attached to the posts by what may be called a "pivot bind" or "torsion-lock." The weight of the bracket, the attached insulator and the electric wire attached to the insulator bind the bracket to the post.
Electric fences have improved significantly over the years. Improvements include:
Its disadvantages include the potential for the entire fence to be disabled due to a break in the conducting wire, shorting out if the conducting wire contacts any non-electrified that may make up the rest of the fence, power failure, or forced disconnection due to the risk of fires starting by dry vegetation touching an electrified wire. Other disadvantages can be lack of visibility and the potential to shock an unsuspecting human passer-by who might accidentally touch or brush the fence.
Many fences are made entirely of standard smooth or high-tensile wire, though high quality synthetic fencing materials are also beginning to be used as part of permanent fences, particularly when visibility of the fence is a concern.
Conventional agricultural fencing of any type may be strengthened by the addition of a single electric line mounted on insulators attached to the top or front of the fence. A similar wire mounted close to the ground may be used to prevent pigs from excavating beneath other fencing. Substandard conventional fencing can also be made temporarily usable until proper repairs are made by the addition of a single electric line set on a "stand-off" insulator.
Electric materials are also used for the construction of temporary fencing, particularly to support the practice of managed intensive grazing (also known as rotational or "strip" grazing). It is also popular in some places for confining horses and pack animals overnight when trail riding, hunting, or at competitions such as endurance riding and competitive trail riding. Typically, one or more strands of wire, synthetic tape or cord are mounted on metal or plastic posts with stakes at the bottom, designed to be driven into the ground by foot. For a hand-tightened temporary fence of electrified rope or web in a small area, these are usually spaced at no more than 12 to 15 feet (about 3 meters) to prevent the fencing material from sagging and touching the ground. Larger areas where tools are used to stretch wire may be able to set step-in posts at larger distances without risk that the fencing material will sag.
With temporary electric fencing, a large area can be fenced off in a short period of time. Temporary fencing that is intended to be left in place for several weeks or months may be given additional support by the use of steel T posts (which are quickly pounded in with hand tools and unearthed with relative ease using a leverage device) to help keep the fence upright, particularly at corners. Livestock owners using rotational grazing in set patterns that are similar from one year to the next may permanently drive a few permanent wood fence posts in strategic locations.
Portable fence energizers are made for temporary fencing, powered solely by batteries, or by a battery kept charged by a small solar panel. Rapid laying-out and removal of multiple-strand temporary electric fencing over a large area may be done using a set of reels mounted on a tractor or all-terrain vehicle.
For sheep, poultry, and other smaller animals, plastic electric netting may be mounted on insulating stakes – this is also effective at keeping out some predators such as foxes.
In practice, once most animals have learned of the unpleasant consequences of touching the fence they tend to avoid it for considerable periods even when it is inactive. However, some animals learn to avoid the shock, either by running under the fence quickly between pulses, or by pushing other individuals through the fence. Animals with thick woolly coats (such as sheep or Highland cattle) may learn to push through the fence themselves, using their coats as electrical insulation. Some animals also learn to recognize the slight clicking sound made by some electric fences and thus can sense when the fence is off.
Buried electric fences (also called "invisible fences" or "electronic fences") are sometimes used to contain dogs or livestock. The buried wire radiates a weak radio signal, which is detected by a collar worn by the animal. The collar emits a warning noise near the wire, but if this is ignored, produces a mild shock. Humans and other animals are unaware of the buried line. In a similar system, the collar uses GPS signals to determine proximity to a predetermined "virtual fence" without a physical installation.
Category:Fences Category:Perimeter security Category:Garden features Category:Agriculture Category:Pest control
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.