An escalator is a moving staircase – a conveyor transport device for carrying people between floors of a building. The device consists of a motor-driven chain of individual, linked steps that move up or down on tracks, allowing the step treads to remain horizontal.
Escalators are used around the world to move pedestrian traffic in places where elevators would be impractical. Principal areas of usage include department stores, shopping malls, airports, transit systems, convention centers, hotels, and public buildings.
The benefits of escalators are many. They have the capacity to move large numbers of people, and they can be placed in the same physical space as one might install a staircase. They have no waiting interval (except during very heavy traffic), they can be used to guide people toward main exits or special exhibits, and they may be weatherproofed for outdoor use.
Escalators have three typical configuration options: parallel (up and down escalators "side by side or separated by a distance", seen often in metro stations and multilevel motion picture theaters), crisscross (minimizes structural space requirements by "stacking" escalators that go in one direction, frequently used in department stores or shopping centers), and multiple parallel (two or more escalators together that travel in one direction next to one or two escalators in the same bank that travel in the other direction).
Escalators are required to have moving handrails that keep pace with the movement of the steps. The direction of movement (up or down) can be permanently the same, or be controlled by personnel according to the time of day, or automatically be controlled by whoever arrives first, whether at the bottom or at the top (the system is programmed so that the direction is not reversed while a passenger is on the escalator).
Traffic patterns must also be anticipated in escalator design. In some buildings, the objective is simply to move people from one floor to another, but in others there may be a more specific requirement, such as funneling visitors towards a main exit or exhibit. The number of passengers is important because escalators are designed to carry a certain maximum number of people. For example, a single-width escalator traveling at about per second can move an estimated 170 persons per five-minute period. The carrying capacity of an escalator system must match the expected peak traffic demand, presuming that passengers ride single file. This is crucial for applications in which there are sudden increases in the number of riders. For example, escalators at stations must be designed to cater for the peak traffic flow discharged from a train, without causing excessive bunching at the escalator entrance.
In this regard, escalators help in controlling traffic flow of people. For example, an escalator to an exit effectively discourages most people from using it as an entrance, and may reduce security concerns. Similarly, escalators often are used as the exit of airport security checkpoints. Such an egress point would generally be staffed to prevent its use as an entrance, as well.
It is preferred that staircases be located adjacent to the escalator if the escalator is the primary means of transport between floors. It may also be necessary to provide an elevator lift adjacent to an escalator for wheelchairs and disabled persons. Finally, consideration should be given to the aesthetics of the escalator. The architects and designers can choose from a wide range of styles and colors for the handrails and balustrades.
+ Escalator step widths and energy usage | ||||
! Size | ! Width (between balustrade panels) | ! Single-step capacity | ! Applications | ! Energy consumption |
! Very small | One passenger, with feet together | A rare historic design found mostly in older department stores | ||
! Small | One passenger | Low-volume sites, uppermost levels of department stores, when space is limited | ||
! Medium | One passenger + one package or one piece of luggage | Shopping malls, department stores, smaller airports | ||
! Large | Two passengers – one may walk past another | Mainstay of metro systems, larger airports, train stations, some retail usage |
; Landing platforms: These two platforms house the curved sections of the tracks, as well as the gears and motors that drive the stairs. The top platform contains the motor assembly and the main drive gear, while the bottom holds the step return idler sprockets. These sections also anchor the ends of the escalator truss. In addition, the platforms contain a floor plate and a combplate. The floor plate provides a place for the passengers to stand before they step onto the moving stairs. This plate is flush with the finished floor and is either hinged or removable to allow easy access to the machinery below. The combplate is the piece between the stationary floor plate and the moving step. It is so named because its edge has a series of cleats that resemble the teeth of a comb. These teeth mesh with matching cleats on the edges of the steps. This design is necessary to minimize the gap between the stair and the landing, which helps prevent objects from getting caught in the gap. ; Truss: The truss is a hollow metal structure that bridges the lower and upper landings. It is composed of two side sections joined together with cross braces across the bottom and just below the top. The ends of the truss are attached to the top and bottom landing platforms via steel or concrete supports. The truss carries all the straight track sections connecting the upper and lower sections. ; Tracks: The track system is built into the truss to guide the step chain, which continuously pulls the steps from the bottom platform and back to the top in an endless loop. There are actually two tracks: one for the front wheels of the steps (called the step-wheel track) and one for the back wheels of the steps (called the trailer-wheel track). The relative positions of these tracks cause the steps to form a staircase as they move out from under the combplate. Along the straight section of the truss the tracks are at their maximum distance apart. This configuration forces the back of one step to be at a 90-degree angle relative to the step behind it. This right angle bends the steps into a shape resembling a staircase. At the top and bottom of the escalator, the two tracks converge so that the front and back wheels of the steps are almost in a straight line. This causes the stairs to lay in a flat sheetlike arrangement, one after another, so they can easily travel around the bend in the curved section of track. The tracks carry the steps down along the underside of the truss until they reach the bottom landing, where they pass through another curved section of track before exiting the bottom landing. At this point the tracks separate and the steps once again assume a staircase configuration. This cycle is repeated continually as the steps are pulled from bottom to top and back to the bottom again. ; Steps: The steps themselves are solid, one piece, die-cast aluminum or steel. Yellow demarcation lines may be added to clearly indicate their edges. In most escalator models manufactured after 1950, both the riser and the tread of each step is cleated (given a ribbed appearance) with comblike protrusions that mesh with the combplates on the top and bottom platforms and the succeeding steps in the chain. Seeberger- or "step-type" escalators (see below) featured flat treads and smooth risers; other escalator models have cleated treads and smooth risers. The steps are linked by a continuous metal chain that forms a closed loop. The front and back edges of the steps are each connected to two wheels. The rear wheels are set further apart to fit into the back track and the front wheels have shorter axles to fit into the narrower front track. As described above, the position of the tracks controls the orientation of the steps. ; Handrail: The handrail provides a convenient handhold for passengers while they are riding the escalator. In an escalator, the handrail is pulled along its track by a chain that is connected to the main drive gear by a series of pulleys. It is constructed of four distinct sections. At the center of the handrail is a "slider", also known as a "glider ply", which is a layer of a cotton or synthetic textile. The purpose of the slider layer is to allow the handrail to move smoothly along its track. The next layer, known as the "tension member", consists of either steel cable or flat steel tape, and provides the handrail with tensile strength and flexibility. On top of tension member are the inner construction components, which are made of chemically treated rubber designed to prevent the layers from separating. Finally, the outer layer—the only part that passengers actually see—is the cover, which is a blend of synthetic polymers and rubber. This cover is designed to resist degradation from environmental conditions, mechanical wear and tear, and human vandalism. :In the factory, handrails are constructed by feeding rubber through a computer-controlled extrusion machine to produce layers of the required size and type in order to match specific orders. The component layers of fabric, rubber, and steel are shaped by skilled workers before being fed into the presses, where they are fused together. :In the mid-twentieth century, some handrail designs consisted of a rubber bellows, with rings of smooth metal cladding called "bracelets" placed between each coil. This gave the handrail a rigid yet flexible feel. Additionally, each bellows section was no more than a few feet long, so if part of the handrail was damaged, only the bad segment needed to be replaced. These forms of handrail have largely been replaced with conventional fabric-and-rubber railings.
There is a risk of feet injuries for children wearing footwear such as Crocs and flip-flops that might get caught in escalator mechanisms. This was due to the softness of the shoe's material combined with the smaller size of children's feet.
Fire protection of an escalator floor opening may be provided by adding automatic sprinklers or fireproof shutters to the opening, or by installing the escalator in an enclosed fire-protected hall. To limit the danger of overheating, ventilation for the spaces that contain the motors and gears must be provided.
Since the station was part of a public institution (the London Underground) and there was a substantial casualty rate, the incident yielded vociferous public outcry as riders and victims’ families demanded the removal of all wooden escalators systemwide. In the official inquiry that followed, the Fennell Report, it was determined that the fire started slowly, smoldered virtually undetected for a time, then exploded into the ticketing hall above in a phenomenon known as the “trench effect.” This slow-burning fire, Fennell found, was allegedly kindled by a discarded unextinguished cigarette, which was shown in laboratory tests to be a more powerful ignition source than a lit match. In the escalators’ undercarriage, approximately of accumulated detritus acted as a wick to a neglected buildup of interior lubricants; wood veneers, paper and plastic advertisements, solvent-based paint, plywood in the ticket hall, and melamine combustion added to the impact of the calamity. Taking this particular situation as an example, one could easily speculate that any accretion of flammable fuels, cloth, or scraps (the “fluff” denoted by Fennell) could likewise lead to a devastating fire.
Consequentially, older wooden escalators were removed from service in the London Underground, though at least one set remains in operation, at Greenford Station. Additionally, sections of the London Underground that were actually below ground were made nonsmoking; eventually the whole system became a smoke-free zone.
Reno, a graduate of Lehigh University, produced the first working escalator (he actually called it the "inclined elevator") and installed it alongside the Old Iron Pier at Coney Island, New York in 1896. This particular device was little more than an inclined belt with cast-iron slats or cleats on the surface for traction, and traveled along a 25° incline. A few months later, the same prototype was used for a monthlong trial period on the Manhattan side of the Brooklyn Bridge. Reno eventually joined forces with Otis Elevator Company, and retired once his patents were purchased outright. Some Reno-type escalators were still being used in the Boston subway until construction for the Big Dig precipitated their removal. The Smithsonian Institution considered re-assembling one of these historic units from 1914 in their collection of Americana, but "logistics and reassembly costs won out over nostalgia", and the project was discarded.
Around May 1895, Charles Seeberger began drawings on a form of escalator similar to those patented by Wheeler in 1892. This device actually consisted of flat, moving stairs, not unlike the escalators of today, except for one important detail: the step surface was smooth, with no comb effect to safely guide the rider's feet off at the ends. Instead, the passenger had to step off sideways. To facilitate this, at the top or bottom of the escalator the steps continued moving horizontally beyond the end of the handrail (like a miniature moving sidewalk) until they disappeared under a triangular "divider" which guided the passenger to either side. Seeberger teamed with Otis Elevator Company in 1899, and together they produced the first commercial escalator which won the first prize at the Paris 1900 ''Exposition Universelle'' in France. Also on display at the ''Exposition'' were Reno's inclined elevator, a similar model by James M. Dodge and the Link Belt Machinery Co., and two different devices by French manufacturers Hallé and Piat.
Hocquardt received European patent rights for the ''Fahrtreppe'' in 1906. After the ''Exposition'', Hallé continued to sell its escalator device in Europe, but was eventually eclipsed in sales by other major manufacturers.
Schindler now stands as the largest maker of escalators and second largest maker of elevators in the world, though their first escalator installation did not occur until 1936. In 1979, the company entered the United States market by purchasing Haughton Elevator; nine years later, Schindler assumed control of the North American escalator/elevator operations of Westinghouse.
Kone expanded internationally by acquisition in the 1970s, buying out Swedish elevator manufacturer Asea-Graham, and purchasing other minor French, German, and Austrian elevator makers before assuming control of Westinghouse’s European elevator business. As the last "big four" manufacturers held on to the escalator market, KONE first acquired Montgomery Elevator Company, then took control of Germany’s Orenstein & Koppel ''Rolltreppen''.
Reno, in addition to his notoriety for the first “practical” escalator in public use, also bears the unique distinction of designing the very first escalators installed in any underground subway system – a single spiral escalator at Holloway Road tube station in London in 1906. The experimental device never saw public use, and was forgotten for several decades. The remains of this are now in the London Transport Museum's depot in Acton. Also the first fully operational spiral escalator, Reno’s design was nonetheless only one in a series of several similar proposed contraptions. Souder patented two spiral designs (see above), Wheeler drafted spiral stairway plans in 1905, Seeberger devised at least two different spiral units between 1906 and 1911 (including an unrealized arrangement for the London Underground), and Gilbert Luna obtained West German, Japanese, and United States patents for his version of a spiral escalator by 1973. When interviewed for the ''Los Angeles Times'' that year, Luna was in the process of soliciting “major firms” for acquisition of his patents and company, but statistics are unclear on the outcome of his endeavors in that regard.
The Mitsubishi Electric Corporation was most successful in its development of "spiral" (more "curve" than true spiral) escalators, and has sold them exclusively since the mid-1980s. The world's first "practical" spiral escalator—a Mitsubishi model—was installed in Osaka, Japan, in 1985.
In use, a major planning advantage presented by spiral escalators is that they take up much less horizontal floor space than traditional units, which frequently house large machine rooms underneath the truss.
"Escalator" was not a combination of other French or Greek words, and was never a derivative of "elevator" in the original sense, which means "one who raises up, a deliverer" in Latin. Similarly, the root word "''scala''" does not mean "a flight of steps", but is defined by Lewis and Short’s ''A Latin Dictionary'' as the singular form of the plural noun "''scalae''", which denotes any of the following: "a flight of steps or stairs, a staircase; a ladder, [or] a scaling-ladder."
The alleged intended capitalization of "escalator" is likewise a topic of debate. Seeberger’s trademark application lists the word not only with the "E" but also with all of the letters capitalized (in two different instances), and he specifies that, "any other form and character of type may be employed . . . without altering in any essential manner the character of [the] trade-mark." That his initial specifications are ostensibly inconsistent, and since Otis Elevator Co. advertisements so frequently capitalized all of the letters in the word, suppositions about the "capital ‘e’" are difficult to formulate.
By 1898, the first of Reno’s "inclined elevators" were incorporated into the Bloomingdale Bros. store at Third Avenue and 59th Street. This was the first retail application of the devices in the US, and no small coincidence, considering that Reno's primary financier was Lyman Bloomingdale, co-owner of the department store with brother Joseph Bloomingdale.
Escalators were also utilized on aircraft carriers such as the , to transport pilots from "ready rooms" to the flight deck.
Video: http://www.youtube.com/watch?v=FSLwCImWv-c
Category:Vertical transport devices Category:Stairways Category:Pedestrian infrastructure Category:American inventions Category:1900 introductions
ar:سلم متحرك bn:এস্কেলেটর zh-min-nan:Tiān-thui be:Эскалатар be-x-old:Эскалатар bg:Ескалатор ca:Escala mecànica cs:Eskalátor da:Rulletrappe de:Fahrtreppe es:Escalera mecánica eo:Rulŝtuparo fa:پله برقی fr:Escalier mécanique ko:에스컬레이터 hy:Շարժասանդուղք hi:चलसोपान id:Eskalator is:Rúllustigi it:Scala mobile he:דרגנוע la:Scalae versatiles hu:Mozgólépcső mr:एस्कलेटर ms:Tangga gerak nl:Roltrap ja:エスカレーター no:Rulletrapp pnb:ٹردی پوڑی pl:Schody ruchome pt:Escada rolante ru:Эскалатор simple:Escalator fi:Liukuportaat sv:Rulltrappa ta:நகர்படி tr:Yürüyen merdiven uk:Ескалатор ur:متحرک زینہ vi:Thang cuốn yi:עסקאלאטאר zh-yue:電梯 zh:電動扶梯This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.