Ruthenium ( ) is a chemical element represented by the symbol Ru and atomic number 44. It is a rare transition metal belonging to the platinum group of the periodic table. Similar to the other metals of the platinum group, ruthenium is inert to most chemicals. The Russian scientist Karl Ernst Claus discovered the element in 1844 and named it after Ruthenia, the Latin word for Rus'. Ruthenium usually occurs as a minor component of platinum ores and its annual production is only about 12 tonnes worldwide. Most ruthenium is used for wear-resistant electrical contacts and the production of thick-film resistors. A minor application of ruthenium is its use in some platinum alloys.
A polyvalent hard white metal, ruthenium is a member of the platinum group and is in group 8 of the periodic table:
However, it has an atypical configuration in its outermost electron shells: whereas all other group 8 elements have 2 electrons in the outermost shell, in ruthenium, one of those is transferred to a lower shell. This effect can be observed in the neighborhood of niobium (41), ruthenium (44), rhodium (45), and palladium (46).
Ruthenium has four crystal modifications and does not tarnish at normal temperatures. Ruthenium dissolves in fused alkalis, is not attacked by acids but is attacked by halogens at high temperatures. Small amounts of ruthenium can increase the hardness of platinum and palladium. The corrosion resistance of titanium is increased markedly by the addition of a small amount of ruthenium.
This metal can be plated either by electroplating or by thermal decomposition methods. A ruthenium-molybdenum alloy is known to be superconductive at temperatures below 10.6 K.
Ruthenium, like the other platinum group metals, is obtained commercially as a by-product from nickel and copper mining and processing as well as by the processing of platinum group metal ores. During electrorefining of copper and nickel, noble metals such as silver, gold and the platinum group metals including selenium and tellurium settle to the bottom of the cell as anode mud, which forms the starting point for their extraction. Osmium, ruthenium, rhodium and iridium can be separated from platinum and gold and base metals by their insolubility in aqua regia, leaving a solid residue. Rhodium can be separated from the residue by treatment with molten sodium bisulfate. The insoluble residue, containing Ru, Os and Ir is treated with sodium oxide, in which Ir is insoluble, producing water-soluble Ru and Os salts. After oxidation to the volatile oxides, is separated from by precipitation of (NH4)3RuCl6 with ammonium chloride or by distillation or extraction with organic solvents of the volatile osmium tetroxide. Hydrogen is used to reduce ammonium ruthenium chloride yielding a powder. The first method to precipitate the ruthenium with ammonium chloride is similar to the procedure that Smithson Tennant and William Hyde Wollaston used for their separation. Several methods are suitable for industrial scale production. In either case, the product is reduced using hydrogen, yielding the metal as a powder or sponge that can be treated using powder metallurgy techniques or by argon-arc welding.
Ruthenium form a wide range compounds with carbon-ruthenium bonds. Ruthenocene is analogous to ferrocene structurally, but exhibits distinctive redox properties. A large number of complexes of carbon monoxide are known, the parent being triruthenium dodecacarbonyl. The analogue of iron pentacarbonyl, ruthenium pentacarbonyl is unstable at ambient conditions. Ruthenium trichloride carbonylates (reacts with carbon monoxide) to give mono- and diruthenium(II) carbonyls from which many derivatives have been prepared such as RuHCl(CO)(PPh3)3 and Ru(CO)2(PPh3)3 (Roper's complex). Heating solutions of ruthenium trichloride in alcohols with triphenylphosphine gives tris(triphenylphosphine)ruthenium dichloride (RuCl2(PPh3)3), which converts to the hydride complex chlorohydridotris(triphenylphosphine)ruthenium(II) (RuHCl(PPh3)3).
It is possible that the Polish chemist Jędrzej Śniadecki isolated element 44 (which he called "vestium") from platinum ores in 1807. He published his discovery in Polish language in article "Rosprawa o nowym metallu w surowey platynie odkrytym" in 1808. His work was never confirmed, however, and he later withdrew his claim of discovery. They examined residues that were left after dissolving crude platinum from the Ural Mountains in aqua regia. Berzelius did not find any unusual metals, but Osann thought he found three new metals, pluranium, ruthenium and polinium. This discrepancy led to a long-standing controversy between Berzelius and Osann about the composition of the residues.
In 1844, the Russian scientist Karl Klaus showed that the compounds prepared by Gottfried Osann contained small amounts of ruthenium, which Klaus had discovered the same year.
Ruthenium dioxide, lead and bismuth ruthenates, the latter with perovskite crystal structure, are used in thick film chip resistors. The first two applications account for 50% of the ruthenium consumption. Ruthenium is also used in some advanced high-temperature single-crystal superalloys, with applications including the turbine blades in jet engines. Several nickel based superalloy compositions are described in the literature. Among them are EPM-102 (with 3 % Ru) and TMS-162 (with 6 % Ru), both containing 6 % rhenium, as well as TMS-138 and TMS-174. Fountain pen nibs are frequently tipped with alloys containing ruthenium. From 1944 onward, the famous Parker 51 fountain pen was fitted with the "RU" nib, a 14K gold nib tipped with 96.2% ruthenium and 3.8% iridium.
Ruthenium is a component of mixed-metal oxide (MMO) anodes used for cathodic protection of underground and submerged structures, and for electrolytic cells for chemical processes such as generating chlorine from salt water. The fluorescence of some ruthenium complexes is quenched by oxygen, which has led to their use as optode sensors for oxygen. Ruthenium red, [(NH3)5Ru-O-Ru(NH3)4-O-Ru(NH3)5]6+, is a biological stain used to stain polyanionic molecules such as pectin and nucleic acids for light microscopy and electron microscopy. The beta-decaying isotope 106 of ruthenium is used in radiotherapy of eye tumors, mainly malignant melanomas of the uvea. Ruthenium-centered complexes are being researched for possible anticancer properties. Ruthenium, unlike traditional platinum complexes, shows greater resistance to hydrolysis and more selective action on tumors. NAMI-A and KP1019 are two drugs undergoing clinical evaluation against metastatic tumors and colon cancers.
Category:Chemical elements Category:Transition metals Category:Precious metals Category:Noble metals
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.