In physics, a phonon is a collective excitation in a periodic, elastic arrangement of atoms or molecules in condensed matter, such as solids and some liquids. Often referred to as a quasiparticle, it represents an excited state in the quantum mechanical quantization of the modes of vibrations of elastic structures of interacting particles.
Phonons play a major role in many of the physical properties of solids, including a material's thermal and electrical conductivities. Hence the study of phonons is an important part of solid state physics.
A phonon is a quantum mechanical description of a special type of vibrational motion, in which a lattice uniformly oscillates at the same frequency. In classical mechanics this is known as the normal mode. The normal mode is important because any arbitrary lattice vibration can be considered as a superposition of these elementary vibrations (cf. Fourier analysis). While normal modes are wave-like phenomena in classical mechanics, they have particle-like properties in the wave–particle duality of quantum mechanics.
The name phonon comes from the Greek word φωνή (phonē), which translates as sound or voice because long-wavelength phonons give rise to sound.
The concept of phonons was introduced by Russian physicist Igor Tamm.
For example, consider a rigid regular, crystalline, i.e. not amorphous, lattice composed of N particles. We will refer to these particles as atoms, although in a real solid these may be molecules. N is some large number, say around 1023 (on the order of Avogadro's number) for a typical sample of solid. If the lattice is rigid, the atoms must be exerting forces on one another to keep each atom near its equilibrium position. These forces may be Van der Waals forces, covalent bonds, electrostatic attractions, and others, all of which are ultimately due to the electric field force. Magnetic and gravitational forces are generally negligible. The forces between each pair of atoms may be characterized by a potential energy function V that depends on the distance of separation of the atoms. The potential energy of the entire lattice is the sum of all pairwise potential energies:
:
where is the position of the th atom, and is the potential energy between two atoms.
It is difficult to solve this many-body problem in full generality, in either classical or quantum mechanics. In order to simplify the task, we introduce two important approximations. First, we perform the sum over neighboring atoms only. Although the electric forces in real solids extend to infinity, this approximation is nevertheless valid because the fields produced by distant atoms are screened. Secondly, we treat the potentials as harmonic potentials: this is permissible as long as the atoms remain close to their equilibrium positions. (Formally, this is done by Taylor expanding about its equilibrium value to quadratic order, giving proportional to the displacement and the elastic force simply proportional to . The error in ignoring higher order terms remains small if remains close to the equilibrium position).
The resulting lattice may be visualized as a system of balls connected by springs. The following figure shows a cubic lattice, which is a good model for many types of crystalline solid. Other lattices include a linear chain, which is a very simple lattice which we will shortly use for modelling phonons. Other common lattices may be found in the article on crystal structure.
:
The potential energy of the lattice may now be written as
:
Here, is the natural frequency of the harmonic potentials, which we assume to be the same since the lattice is regular. is the position coordinate of the th atom, which we now measure from its equilibrium position. The sum over nearest neighbors is denoted as "(nn)".
There is a minimum possible wavelength, given by twice the equilibrium separation a between atoms. As we shall see in the following sections, any wavelength shorter than this can be mapped onto a wavelength longer than 2a, due to the periodicity of the lattice.
Not every possible lattice vibration has a well-defined wavelength and frequency. However, the normal modes do possess well-defined wavelengths and frequencies.
::::::::n-1 n n+1 ← d → o++++++o++++++o++++++o++++++o++++++o++++++o++++++o++++++o++++++o :::::::::→→→→→→ :::::::::
Where labels the n'th atom, is the distance between atoms when the chain is in equilibrium and the displacement of the n'th atom from its equilibrium position. If C is the elastic constant of the spring and m the mass of the atom then the equation of motion of the n'th atom is :
: This is a set of coupled equations and since we expect the solutions to be oscillatory, new coordinates can be defined by a discrete Fourier transform, in order to de-couple them.
Put
:
Here replaces the usual continuous variable . The are known as the normal coordinates. Substitution into the equation of motion produces the following decoupled equations.(This requires a significant manipulation using the orthonormality and completeness relations of the discrete fourier transform )
:
These are the equations for harmonic oscillators which have the solution: :
Each normal coordinate represents an independent vibrational mode of the lattice with wavenumber which is known as a normal mode. The second equation for is known as the dispersion relation between the angular frequency and the wavenumber.
:
where is the mass of each atom, and and are the position and momentum operators for the th atom. A discussion of similar Hamiltonians may be found in the article on the quantum harmonic oscillator.
We introduce a set of "normal coordinates" , defined as the discrete Fourier transforms of the 's and "conjugate momenta" defined as the Fourier transforms of the 's:
:
The quantity will turn out to be the wave number of the phonon, i.e. divided by the wavelength. It takes on quantized values, because the number of atoms is finite. The form of the quantization depends on the choice of boundary conditions; for simplicity, we impose periodic boundary conditions, defining the th atom as equivalent to the first atom. Physically, this corresponds to joining the chain at its ends. The resulting quantization is
:
The upper bound to comes from the minimum wavelength, which is twice the lattice spacing , as discussed above.
By inverting the discrete Fourier transforms to express the 's in terms of the 's and the 's in terms of the 's, and using the canonical commutation relations between the 's and 's, we can show that
:
In other words, the normal coordinates and their conjugate momenta obey the same commutation relations as position and momentum operators! Writing the Hamiltonian in terms of these quantities,
:
where
:
Notice that the couplings between the position variables have been transformed away; if the 's and 's were Hermitian (which they are not), the transformed Hamiltonian would describe uncoupled harmonic oscillators.
The harmonic oscillator eigenvalues or energy levels for the mode are :
::
If we ignore the zero-point energy then the levels are evenly spaced at :
::So a minimum amount of energy must be supplied to the harmonic oscillator(or normal mode) to move it to the next energy level. In comparison to the photon case when the electromagnetic field is quantised, the quantum of vibrational energy is called a phonon.
All quantum systems show wave-like and particle-like properties. The particle-like properties of the phonon are best understood using the methods of second-quantisation and operator techniques described later.
The new indices s = 1, 2, 3 label the polarization of the phonons. In the one dimensional model, the atoms were restricted to moving along the line, so the phonons corresponded to longitudinal waves. In three dimensions, vibration is not restricted to the direction of propagation, and can also occur in the perpendicular planes, like transverse waves. This gives rise to the additional normal coordinates, which, as the form of the Hamiltonian indicates, we may view as independent species of phonons.
:
This is known as a dispersion relation.
The speed of propagation of a phonon, which is also the speed of sound in the lattice, is given by the slope of the dispersion relation, (see group velocity.) At low values of (i.e. long wavelengths), the dispersion relation is almost linear, and the speed of sound is approximately , independent of the phonon frequency. As a result, packets of phonons with different (but long) wavelengths can propagate for large distances across the lattice without breaking apart. This is the reason that sound propagates through solids without significant distortion. This behavior fails at large values of , i.e. short wavelengths, due to the microscopic details of the lattice.
For a crystal that has at least two atoms in its primitive cell (which may or may not be different), the dispersion relations exhibit two types of phonons, namely, optical and acoustic modes corresponding to the upper and lower sets of curves in the diagram, respectively. The vertical axis is the energy or frequency of phonon, while the horizontal axis is the wave-vector. The boundaries at -km and km are those of the first Brillouin zone. The blue, violet, and brown curves are those of longitudinal acoustic, transverse acoustic 1, and transverse acoustic 2 modes, respectively.
In some crystals the two transverse acoustic modes have exactly the same dispersion curve. It is also interesting that for a crystal with N ( > 2) different atoms in a primitive cell, there are always three acoustic modes. The number of optical modes is 3N - 3. Many phonon dispersion curves have been measured by neutron scattering.
The physics of sound in fluids differs from the physics of sound in solids, although both are density waves: sound waves in fluids only have longitudinal components, whereas sound waves in solids have longitudinal and transverse components. This is because fluids can't support shear stresses. (but see viscoelastic fluids, which only apply to high frequencies, though).
The energy spectrum of this Hamiltonian is easily obtained by the method of ladder operators, similar to the quantum harmonic oscillator problem. We introduce a set of ladder operators defined by
:
The ladder operators satisfy the following identities:
:
:
:
As with the quantum harmonic oscillator, we can then show that and respectively create and destroy one excitation of energy . These excitations are phonons.
We can immediately deduce two important properties of phonons. Firstly, phonons are bosons, since any number of identical excitations can be created by repeated application of the creation operator . Secondly, each phonon is a "collective mode" caused by the motion of every atom in the lattice. This may be seen from the fact that the ladder operators contain sums over the position and momentum operators of every atom.
It is not a priori obvious that these excitations generated by the operators are literally waves of lattice displacement, but one may convince oneself of this by calculating the position-position correlation function. Let denote a state with a single quantum of mode excited, i.e.
:
One can show that, for any two atoms and ,
:
which is exactly what we would expect for a lattice wave with frequency and wave number .
In three dimensions the Hamiltonian has the form
:
In terms of the dispersion relations for phonons, acoustic phonons exhibit linear dispersion, i.e., a linear relationship between frequency and phonon wavevector, in the long-wavelength limit. The frequencies of acoustic phonons, which are the phonons described above, tend to zero with longer wavelength, and correspond to sound waves in the lattice. Longitudinal and transverse acoustic phonons are often abbreviated as LA and TA phonons, respectively.
Optical phonons, however, have a non-zero frequency at the Brillouin zone center and show no dispersion near that long wavelength limit. They are called optical because in ionic crystals, such as sodium chloride, they are excited by infrared radiation. This is because they correspond to a mode of vibration where positive and negative ions at adjacent lattice sites swing against each other, creating a time-varying electrical dipole moment. Optical phonons that interact in this way with light are called infrared active. Optical phonons that are Raman active can also interact indirectly with light, through Raman scattering. Optical phonons are often abbreviated as LO and TO phonons, for the longitudinal and transverse modes respectively.
:
where
:
for any integer . A phonon with wave number is thus equivalent to an infinite "family" of phonons with wave numbers , , and so forth. Physically, the reciprocal lattice vectors act as additional "chunks" of momentum which the lattice can impart to the phonon. Bloch electrons obey a similar set of restrictions.
It is usually convenient to consider phonon wave vectors which have the smallest magnitude in their "family". The set of all such wave vectors defines the first Brillouin zone. Additional Brillouin zones may be defined as copies of the first zone, shifted by some reciprocal lattice vector.
It is interesting that similar consideration is needed in analog-to-digital conversion where aliasing may occur under certain conditions.
At absolute zero temperature, a crystal lattice lies in its ground state, and contains no phonons. A lattice at a non-zero temperature has an energy that is not constant, but fluctuates randomly about some mean value. These energy fluctuations are caused by random lattice vibrations, which can be viewed as a gas of phonons. (The random motion of the atoms in the lattice is what we usually think of as heat.) Because these phonons are generated by the temperature of the lattice, they are sometimes referred to as thermal phonons.
Unlike the atoms which make up an ordinary gas, thermal phonons can be created and destroyed by random energy fluctuations. In the language of statistical mechanics this means that the chemical potential for adding a phonon is zero. This behavior is an extension of the harmonic potential, mentioned earlier, into the anharmonic regime. The behavior of thermal phonons is similar to the photon gas produced by an electromagnetic cavity, wherein photons may be emitted or absorbed by the cavity walls. This similarity is not coincidental, for it turns out that the electromagnetic field behaves like a set of harmonic oscillators; see Black-body radiation. Both gases obey the Bose-Einstein statistics: in thermal equilibrium and within the harmonic regime, the probability of finding phonons (or photons) in a given state with a given angular frequency is:
:
where is the frequency of the phonons (or photons) in the state, is Boltzmann's constant, and is the temperature.
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
Name | Susumu Hirasawa平沢進 |
---|---|
Background | solo_singer |
Origin | Tokyo, Japan |
Born | April 02, 1954 |
Genre | Electropop, Electronic, New Wave, Synth Rock |
Occupation | Musician, Producer, Activist |
Years active | 1979–present |
Instrument | KeyboardGuitarAmiga |
First album | Water in Time and Space |
Latest album | Planet Roll Call |
Associated acts | P-Model, Kaku P-Model, Mandrake, Shun, Global Trotters |
Url | susumuhirasawa.com |
is a Japanese electropop artist.
In 1972, he enrolled at Tokyo Designer Gakuin College. From 1972 to 1978, he performed in his first band Mandrake, a progressive rock group influenced by King Crimson and Yes. In 1979 he formed a New Wave synth-rock & techno-pop band called P-Model, along with two former members of Mandrake. They released a string of albums through the 1980s, and in 1989, Hirasawa began releasing solo work, while also continuing to work with the reactivated P-Model beginning in 1992. The P-Model project continued until 1999; in 2004 Hirasawa started a new unit known as Kaku P-Model, which is effectively a solo continuation of P-Model.
Hirasawa's live music is based on samples he activates with various hand-crafted sampler machines, pre-recorded tracks without vocals, and no regular backup performers. For the Solar Ray live tour, he used solar power and a power-generating wheel, inspired by bicycles, to power his electronic equipment. DVDs are available of his innovative award-winning live performances via his website (and ordering through Teslakite).
Category:Japanese electronic musicians Category:Japanese composers Category:Anime composers Category:1954 births Category:Living people Category:Japanese record producers
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.