A
laser is a device that emits
light (
electromagnetic radiation) through a process of
optical amplification based on the
stimulated emission of
photons. The term "laser" originated as an
acronym for ''Light Amplification by Stimulated Emission of Radiation''. The emitted laser light is notable for its high degree of spatial and temporal
coherence, unattainable using other technologies.
Spatial coherence typically is expressed through the output being a narrow beam which is diffraction-limited, often a so-called "pencil beam." Laser beams can be focused to very tiny spots, achieving a very high irradiance. Or they can be launched into a beam of very low divergence in order to concentrate their power at a large distance.
Temporal (or longitudinal) coherence implies a polarized wave at a single frequency whose phase is correlated over a relatively large distance (the coherence length) along the beam. A beam produced by a thermal or other incoherent light source has an instantaneous amplitude and phase which vary randomly with respect to time and position, and thus a very short coherence length.
Most so-called "single wavelength" lasers actually produce radiation in several ''modes'' having slightly different frequencies (wavelengths), often not in a single polarization. And although temporal coherence implies monochromaticity, there are even lasers that emit a broad spectrum of light, or emit different wavelengths of light simultaneously. There are some lasers which are not single spatial mode and consequently their light beams diverge more than required by the diffraction limit. However all such devices are classified as "lasers" based on their method of producing that light: stimulated emission. Lasers are employed in applications where light of the required spatial or temporal coherence could not be produced using simpler technologies.
The word ''laser'' started as an
acronym for "light amplification by stimulated emission of radiation"; in modern usage "light" broadly denotes electromagnetic radiation of any frequency, not only
visible light, hence ''infrared laser'', ''ultraviolet laser'', ''X-ray laser'', and so on. Because the microwave predecessor of the laser, the
maser, was developed first, devices of this sort operating at microwave and
radio frequencies are referred to as "masers" rather than "microwave lasers" or "radio lasers". In the early technical literature, especially at
Bell Telephone Laboratories, the laser was called an
optical maser; this term is now obsolete.
A laser which produces light by itself is technically an optical oscillator rather than an optical amplifier as suggested by the acronym. It has been humorously noted that the acronym LOSER, for "light oscillation by stimulated emission of radiation," would have been more correct. With the widespread use of the original acronym as a common noun, actual optical amplifiers have come to be referred to as "laser amplifiers", notwithstanding the apparent redundancy in that designation.
The back-formed verb ''to lase'' is frequently used in the field, meaning "to produce laser light," especially in reference to the gain medium of a laser; when a laser is operating it is said to be "lasing." Further use of the words ''laser'' and ''maser'' in an extended sense, not referring to laser technology or devices, can be seen in usages such as ''astrophysical maser'' and ''atom laser''.
A laser consists of a
gain medium inside a highly reflective
optical cavity, as well as a means to supply energy to the gain medium. The gain medium is a material with properties that allow it to amplify light by stimulated emission. In its simplest form, a cavity consists of two mirrors arranged such that light bounces back and forth, each time passing through the gain medium. Typically one of the two mirrors, the
output coupler, is partially transparent. The output laser beam is emitted through this mirror.
Light of a specific wavelength that passes through the gain medium is amplified (increases in power); the surrounding mirrors ensure that most of the light makes many passes through the gain medium, being amplified repeatedly. Part of the light that is between the mirrors (that is, within the cavity) passes through the partially transparent mirror and escapes as a beam of light.
The process of supplying the energy required for the amplification is called pumping. The energy is typically supplied as an electrical current or as light at a different wavelength. Such light may be provided by a flash lamp or perhaps another laser. Most practical lasers contain additional elements that affect properties such as the wavelength of the emitted light and the shape of the beam.
Electrons and how they interact with
electromagnetic fields are important in our understanding of
chemistry and
physics.
In the
classical view, the energy of an electron orbiting an atomic nucleus is larger for orbits further from the
nucleus of an
atom. However, quantum mechanical effects force electrons to take on discrete positions in
orbitals. Thus, electrons are found in specific energy levels of an atom, two of which are shown below:
When an electron absorbs energy either from light (photons) or heat (phonons), it receives that incident quanta of energy. But transitions are only allowed in between discrete energy levels such as the two shown above.
This leads to emission lines and absorption lines.
When an electron is excited from a lower to a higher energy level, it will not stay that way forever.
An electron in an excited state may decay to a lower energy state which is not occupied, according to a particular time constant characterizing that transition. When such an electron decays without external influence, emitting a photon, that is called "spontaneous emission". The phase associated with the photon that is emitted is random. A material with many atoms in such an excited state may thus result in radiation which is very spectrally limited (centered around one wavelength of light), but the individual photons would have no common phase relationship and would emanate in random directions. This is the mechanism of fluorescence and thermal emission.
An external electromagnetic field at a frequency associated with a transition can affect the quantum mechanical state of the atom. As the electron in the atom makes a transition between two stationary states (neither of which shows a dipole field), it enters a transition state which does have a dipole field, and which acts like a small electric dipole, and this dipole oscillates at a characteristic frequency. In response to the external electric field at this frequency, the probability of the atom entering this transition state is greatly increased. Thus, the rate of transitions between two stationary states is enhanced beyond that due to spontaneous emission. Such a transition to the higher state is called absorption, and it destroys an incident photon (the photon's energy goes into powering the increased energy of the higher state). A transition from the higher to a lower energy state, however, produces an additional photon; this is the process of stimulated emission.
The gain medium is excited by an external source of energy into an excited state. In most lasers this medium consists of population of atoms which have been excited into such a state by means of an outside light source, or a electrical field which supplies energy for atoms to absorb and be transformed into their excited states.
The gain medium of a laser is normally a material of controlled purity, size, concentration, and shape, which amplifies the beam by the process of stimulated emission described above. This material can be of any state: gas, liquid, solid, or plasma. The gain medium absorbs pump energy, which raises some electrons into higher-energy ("excited") quantum states. Particles can interact with light by either absorbing or emitting photons. Emission can be spontaneous or stimulated. In the latter case, the photon is emitted in the same direction as the light that is passing by. When the number of particles in one excited state exceeds the number of particles in some lower-energy state, population inversion is achieved and the amount of stimulated emission due to light that passes through is larger than the amount of absorption. Hence, the light is amplified. By itself, this makes an optical amplifier. When an optical amplifier is placed inside a resonant optical cavity, one obtains a laser.
In a few situations it is possible to obtain lasing with only a single pass of EM radiation through the gain medium, and this produces a laser beam without any need for a resonant or reflective cavity (see for example nitrogen laser). Thus, reflection in a resonant cavity is usually required for a laser, but is not absolutely necessary.
The optical resonator is sometimes referred to as an "optical cavity", but this is a misnomer: lasers use open resonators as opposed to the literal cavity that would be employed at microwave frequencies in a maser.
The resonator typically consists of two mirrors between which a coherent beam of light travels in both directions, reflecting back on itself so that an average photon will pass through the gain medium repeatedly before it is emitted from the output aperture or lost to diffraction or absorption.
If the gain (amplification) in the medium is larger than the resonator losses, then the power of the recirculating light can rise exponentially. But each stimulated emission event returns an atom from its excited state to the ground state, reducing the gain of the medium. With increasing beam power the net gain (gain times loss) reduces to unity and the gain medium is said to be saturated. In a continuous wave (CW) laser, the balance of pump power against gain saturation and cavity losses produces an equilibrium value of the laser power inside the cavity; this equilibrium determines the operating point of the laser. If the applied pump power is too small, the gain will never be sufficient to overcome the resonator losses, and laser light will not be produced. The minimum pump power needed to begin laser action is called the ''lasing threshold''. The gain medium will amplify any photons passing through it, regardless of direction; but only the photons in a spatial mode supported by the resonator will pass more than once through the medium and receive substantial amplification.
The light generated by stimulated emission is very similar to the input signal in terms of wavelength,
phase, and polarization. This gives laser light its characteristic coherence, and allows it to maintain the uniform polarization and often monochromaticity established by the optical cavity design.
The beam in the cavity and the output beam of the laser, when travelling in free space (or a homogenous medium) rather than waveguides (as in an optical fiber laser), can be approximated as a Gaussian beam in most lasers; such beams exhibit the minimum divergence for a given diameter. However some high power lasers may be multimode, with the transverse modes often approximated using Hermite-Gaussian or Laguerre-Gaussian functions. It has been shown that unstable laser resonators (not used in most lasers) produce fractal shaped beams. Near the beam "waist" (or focal region) it is highly ''collimated'': the wavefronts are planar, normal to the direction of propagation, with no beam divergence at that point. However
due to diffraction, that can only remain true well within the Rayleigh range. The beam of a single transverse mode (gaussian beam) laser eventually diverges at an angle which varies inversely with the beam diameter, as required by diffraction theory. Thus, the "pencil beam" directly generated by a common helium-neon laser would spread out to a size of perhaps 500 kilometers when shone on the Moon (from the distance of the earth). On the other hand the light from a semiconductor laser typically exits the tiny crystal with a large divergence: up to 50°. However even such a divergent beam can be transformed into a similarly collimated beam by means of a lens system, as is always included, for instance, in a laser pointer whose light originates from a laser diode. That is possible due to the light being of a single spatial mode. This unique property of laser light, spatial coherence, cannot be replicated using standard light sources (except by discarding most of the light) as can be appreciated by comparing the beam from a flashlight (torch) or spotlight to that of almost any laser.
The mechanism of producing radiation in a laser relies on
stimulated emission, where energy is extracted from a transition in an atom or molecule. This is a quantum phenomenon discovered by
Einstein who derived the relationship between the
A coefficient describing spontaneous emission and the
B coefficient which applies to absorption and stimulated emission. However in the case of the
free electron laser, atomic energy levels are not involved; it appears that the operation of this rather exotic device can be explained without reference to
quantum mechanics.
A laser can be classified as operating in either continuous or pulsed mode, depending on whether the power output is essentially continuous over time or whether its output takes the form of pulses of light on one or another time scale. Of course even a laser whose output is normally continuous can be intentionally turned on and off at some rate in order to create pulses of light. When the modulation rate is on time scales much slower than the
cavity lifetime and the time period over which energy can be stored in the lasing medium or pumping mechanism, then it is still classified as a "modulated" or "pulsed" continuous wave laser. Most laser diodes used in communication systems fall in that category.
Some applications of lasers depend on a beam whose output power is constant over time. Such a laser is known as ''
continuous wave'' (''CW''). Many types of lasers can be made to operate in continuous wave mode to satisfy such an application. Many of these lasers actually lase in several longitudinal modes at the same time, and beats between the slightly different optical frequencies of those oscillations will in fact produce amplitude variations on time scales shorter than the round-trip time (the reciprocal of the
frequency spacing between modes), typically a few nanoseconds or less. In most cases these lasers are still termed "continuous wave" as their output power is steady when averaged over any longer time periods, with the very high frequency power variations having little or no impact in the intended application. (However the term is not applied to
mode-locked lasers, where the ''intention'' is to create very short pulses at the rate of the round-trip time).
For continuous wave operation it is required for the population inversion of the gain medium to be continually replenished by a steady pump source. In some lasing media this is impossible. In some other lasers it would require pumping the laser at a very high continuous power level which would be impractical or destroy the laser by producing excessive heat. Such lasers cannot be run in CW mode.
Pulsed operation of lasers refers to any laser not classified as continuous wave, so that the optical power appears in pulses of some duration at some repetition rate. This encompasses a wide range of technologies addressing a number of different motivations. Some lasers are pulsed simply because they cannot be run in
continuous mode.
In other cases the application requires the production of pulses having as large an energy as possible. Since the pulse energy is equal to the average power divided by the repetition rate, this goal can sometimes be satisfied by lowering the rate of pulses so that more energy can be built up in between pulses. In laser ablation for example, a small volume of material at the surface of a work piece can be evaporated if it is heated in a very short time, whereas supplying the energy gradually would allow for the heat to be absorbed into the bulk of the piece, never attaining a sufficiently high temperature at a particular point.
Other applications rely on the peak pulse power (rather than the energy in the pulse), especially in order to obtain nonlinear optical effects. For a given pulse energy, this requires creating pulses of the shortest possible duration utilizing techniques such as Q-switching.
The optical bandwidth of a pulse cannot be narrower than the reciprocal of the pulse width. In the case of extremely short pulses, that implies lasing over a considerable bandwidth, quite contrary to the very narrow bandwidths typical of CW lasers. The lasing medium in some ''dye lasers'' and ''vibronic solid-state lasers'' produces optical gain over a wide bandwidth, making a laser possible which can thus generate pulses of light as short as a few femtoseconds (10−15 s).
In a Q-switched laser, the population inversion is allowed to build up by introducing loss inside the resonator which exceeds the gain of the medium; this can also be described as a reduction of the quality factor or 'Q' of the cavity. Then, after the pump energy stored in the laser medium has approached the maximum possible level, the introduced loss mechanism (often an electro- or acousto-optical element) is rapidly removed (or that occurs by itself in a passive device), allowing lasing to begin which rapidly obtains the stored energy in the gain medium. This results in a short pulse incorporating that energy, and thus a high peak power.
A mode-locked laser is capable of emitting extremely short pulses on the order of tens of
picoseconds down to less than 10
femtoseconds. These pulses will repeat at the round trip time, that is, the time that it takes light to complete one round trip between the mirrors comprising the resonator. Due to the
Fourier limit (also known as energy-time
uncertainty), a pulse of such short temporal length has a spectrum spread over a considerable bandwidth. Thus such a gain medium must have a gain bandwidth sufficiently broad to amplify those frequencies. An example of a suitable material is
titanium-doped, artificially grown
sapphire (
Ti:sapphire) which has a very wide gain bandwidth and can thus produce pulses of only a few femtoseconds duration.
Such mode-locked lasers are a most versatile tool for researching processes occurring on extremely short time scales (known as femtosecond physics, femtosecond chemistry and ultrafast science), for maximizing the effect of nonlinearity in optical materials (e.g. in second-harmonic generation, parametric down-conversion, optical parametric oscillators and the like) due to the large peak power, and in ablation applications. Again, because of the extremely short pulse duration, such a laser will produce pulses which achieve an extremely high peak power.
Another method of achieving pulsed laser operation is to pump the laser material with a source that is itself pulsed, either through electronic charging in the case of flash lamps, or another laser which is already pulsed. Pulsed pumping was historically used with dye lasers where the inverted population lifetime of a dye molecule was so short that a high energy, fast pump was needed. The way to overcome this problem was to charge up large
capacitors which are then switched to discharge through flashlamps, producing an intense flash. Pulsed pumping is also required for three-level lasers in which the lower energy level rapidly becomes highly populated preventing further lasing until those atoms relax to the ground state. These lasers, such as the excimer laser and the copper vapor laser, can never be operated in CW mode.
In 1917,
Albert Einstein established the theoretic foundations for the laser and the maser in the paper ''Zur Quantentheorie der Strahlung'' (On the Quantum Theory of Radiation); via a re-derivation of
Max Planck’s law of radiation, conceptually based upon probability coefficients (
Einstein coefficients) for the absorption, spontaneous emission, and stimulated emission of electromagnetic radiation; in 1928,
Rudolf W. Ladenburg confirmed the existences of the phenomena of stimulated emission and negative absorption; in 1939, Valentin A. Fabrikant predicted the use of stimulated emission to amplify “short” waves; in 1947,
Willis E. Lamb and R. C. Retherford found apparent stimulated emission in hydrogen spectra and effected the first demonstration of stimulated emission;
In 1953,
Charles Hard Townes and graduate students James P. Gordon and Herbert J. Zeiger produced the first microwave amplifier, a device operating on similar principles to the laser, but amplifying
microwave radiation rather than infrared or visible radiation. Townes's maser was incapable of continuous output. Meanwhile, in the
Soviet Union,
Nikolay Basov and
Aleksandr Prokhorov were independently working on the quantum
oscillator and solved the problem of continuous-output systems by using more than two energy levels. These gain media could release
stimulated emissions between an excited state and a lower excited state, not the ground state, facilitating the maintenance of a
population inversion. In 1955, Prokhorov and Basov suggested optical pumping of a multi-level system as a method for obtaining the population inversion, later a main method of laser pumping.
Townes reports that several eminent physicists — among them Niels Bohr, John von Neumann, Isidor Rabi, Polykarp Kusch, and Llewellyn Thomas — argued the maser violated Heisenberg's uncertainty principle and hence could not work. In 1964 Charles H. Townes, Nikolay Basov, and Aleksandr Prokhorov shared the Nobel Prize in Physics, “for fundamental work in the field of quantum electronics, which has led to the construction of oscillators and amplifiers based on the maser–laser principle”.
In 1957,
Charles Hard Townes and
Arthur Leonard Schawlow, then at
Bell Labs, began a serious study of the infrared laser. As ideas developed, they abandoned
infrared radiation to instead concentrate upon
visible light. The concept originally was called an "optical maser". In 1958, Bell Labs filed a
patent application for their proposed optical maser; and Schawlow and Townes submitted a manuscript of their theoretical calculations to the ''
Physical Review'', published that year in Volume 112, Issue No. 6.
thumb|right|LASER notebook: First page of the notebook wherein Gordon Gould coined the LASER acronym, and described the [[technology|technologic elements for constructing the device.]]
Simultaneously, at Columbia University, graduate student Gordon Gould was working on a doctoral thesis about the energy levels of excited thallium. When Gould and Townes met, they spoke of radiation emission, as a general subject; afterwards, in November 1957, Gould noted his ideas for a “laser”, including using an open resonator (later an essential laser-device component). Moreover, in 1958, Prokhorov independently proposed using an open resonator, the first published appearance (the USSR) of this idea. Elsewhere, in the U.S., Schawlow and Townes had agreed to an open-resonator laser design — apparently unaware of Prokhorov’s publications and Gould’s unpublished laser work.
At a conference in 1959, Gordon Gould published the term LASER in the paper ''The LASER, Light Amplification by Stimulated Emission of Radiation''. Gould’s linguistic intention was using the “-aser” word particle as a suffix — to accurately denote the spectrum of the light emitted by the LASER device; thus x-rays: ''xaser'', ultraviolet: ''uvaser'', et cetera; none established itself as a discrete term, although “raser” was briefly popular for denoting radio-frequency-emitting devices.
Gould’s notes included possible applications for a laser, such as spectrometry, interferometry, radar, and nuclear fusion. He continued developing the idea, and filed a patent application in April 1959. The U.S. Patent Office denied his application, and awarded a patent to Bell Labs, in 1960. That provoked a twenty-eight-year lawsuit, featuring scientific prestige and money as the stakes. Gould won his first minor patent in 1977, yet it was not until 1987 that he won the first significant patent lawsuit victory, when a Federal judge ordered the U.S. Patent Office to issue patents to Gould for the optically pumped and the gas discharge laser devices. The question of just how to assign credit for inventing the laser remains unresolved by historians.
On May 16, 1960, Theodore H. Maiman operated the first functioning laser, at Hughes Research Laboratories, Malibu, California, ahead of several research teams, including those of Townes, at Columbia University, Arthur Schawlow, at Bell Labs, and Gould, at the TRG (Technical Research Group) company. Maiman’s functional laser used a solid-state flashlamp-pumped synthetic ruby crystal to produce red laser light, at 694 nanometres wavelength; however, the device only was capable of pulsed operation, because of its three-level pumping design scheme. Later in 1960, the Iranian physicist Ali Javan, and William R. Bennett, and Donald Herriott, constructed the first gas laser, using helium and neon that was capable of continuous operation in the infrared (U.S. Patent 3,149,290); later, Javan received the Albert Einstein Award in 1993. Basov and Javan proposed the semiconductor laser diode concept. In 1962, Robert N. Hall demonstrated the first ''laser diode'' device, made of gallium arsenide and emitted at 850 nm the near-infrared band of the spectrum. Later, in 1962, Nick Holonyak, Jr. demonstrated the first semiconductor laser with a visible emission. This first semiconductor laser could only be used in pulsed-beam operation, and when cooled to liquid nitrogen temperatures (77 K). In 1970, Zhores Alferov, in the USSR, and Izuo Hayashi and Morton Panish of Bell Telephone Laboratories also independently developed room-temperature, continual-operation diode lasers, using the heterojunction structure.
Since the early period of laser history, laser research has produced a variety of improved and specialized laser types, optimized for different performance goals, including:
new wavelength bands
maximum average output power
maximum peak pulse energy
maximum peak pulse power
minimum output pulse duration
maximum power efficiency
minimum cost
and this research continues to this day.
Lasing without maintaining the medium excited into a population inversion was discovered in 1992 in sodium gas and again in 1995 in rubidium gas by various international teams. This was accomplished by using an external maser to induce "optical transparency" in the medium by introducing and destructively interfering the ground electron transitions between two paths, so that the likelihood for the ground electrons to absorb any energy has been cancelled.
:''For a more complete list of laser types see this
list of laser types.''
Following the invention of the HeNe gas laser, many other gas discharges have been found to amplify light coherently.
Gas lasers using many different
gases have been built and used for many purposes. The
helium-neon laser (HeNe) is able to operate at a number of different wavelengths, however the vast majority are engineered to lase at 633 nm; these relatively low cost but highly coherent lasers are extremely common in optical research and educational laboratories. Commercial
carbon dioxide (CO2) lasers can emit many hundreds of watts in a single spatial mode which can be concentrated into a tiny spot. This emission is in the thermal infrared at 10.6 µm; such lasers are regularly used in industry for cutting and welding. The efficiency of a CO
2 laser is unusually high: over 10%.
Argon-ion lasers can operate at a number of lasing transitions between 351 and 528.7 nm. Depending on the optical design one or more of these transitions can be lasing simultaneously; the most commonly used lines are 458 nm, 488 nm and 514.5 nm. A nitrogen
transverse electrical discharge in gas at atmospheric pressure (TEA) laser is an inexpensive gas laser, often home-built by hobbyists, which produces rather incoherent UV light at 337.1 nm. Metal ion lasers are gas lasers that generate
deep ultraviolet wavelengths.
Helium-
silver (HeAg) 224 nm and
neon-
copper (NeCu) 248 nm are two examples. Like all low-pressure gas lasers, the gain media of these lasers have quite narrow oscillation
linewidths, less than 3
GHz (0.5
picometers), making them candidates for use in
fluorescence suppressed
Raman spectroscopy.
Chemical lasers are powered by a chemical reaction permitting a large amount of energy to be released quickly. Such very high power lasers are especially of interest to the military, however continuous wave chemical lasers at very high power levels, fed by streams of gasses, have been developed and have some industrial applications. As examples, in the
Hydrogen fluoride laser (2700-2900 nm) and the
Deuterium fluoride laser (3800 nm) the reaction is the combination of hydrogen or deuterium gas with combustion products of
ethylene in
nitrogen trifluoride.
Excimer lasers are a special sort of gas laser powered by an electric discharge in which the lasing medium is an
excimer, or more precisely an
exciplex in existing designs. These are molecules which can only exist with one atom in an
excited electronic state. Once the molecule transfers its excitation energy to a photon, therefore, its atoms are no longer bound to each other and the molecule disintegrates. This drastically reduces the population of the lower energy state thus greatly facilitating a population inversion. Excimers currently used are all
noble gas compounds; noble gasses are chemically inert and can only form compounds while in an excited state. Excimer lasers typically operate at
ultraviolet wavelengths with major applicatons including semiconductor
photolithography and
LASIK eye surgery. Commonly used excimer molecules include ArF (emission at 193 nm), KrCl (222 nm), KrF (248 nm), XeCl (308 nm), and XeF (351 nm).
The molecular
fluorine laser, emitting at 157 nm in the vacuum ultraviolet is sometimes referred to as an excimer laser, however this appears to be a misnomer inasmuch as F
2 is a stable compound.
Solid-state lasers use a crystalline or glass rod which is "doped" with ions that provide the required energy states. For example, the first working laser was a
ruby laser, made from
ruby (
chromium-doped
corundum). The
population inversion is actually maintained in the "dopant", such as
chromium or
neodymium.
These materials are pumped optically using a shorter wavelength than the lasing wavelength, often from a flashtube or from another laser.
It should be noted that "solid-state" in this sense refers to a crystal or glass, but this usage is distinct from the designation of "solid-state electronics" in referring to semiconductors. Semiconductor lasers (laser diodes) are pumped electrically and are thus ''not'' referred to as solid-state lasers.
The class of solid-state lasers would, however, properly include fiber lasers in which dopants in the glass lase under optical pumping. But in practice these are simply referred to as "fiber lasers" with "solid-state" reserved for lasers using a solid rod of such a material.
Neodymium is a common "dopant" in various solid-state laser crystals, including yttrium orthovanadate (Nd:YVO4), yttrium lithium fluoride (Nd:YLF) and yttrium aluminium garnet (Nd:YAG). All these lasers can produce high powers in the infrared spectrum at 1064 nm. They are used for cutting, welding and marking of metals and other materials, and also in spectroscopy and for pumping dye lasers.
These lasers are also commonly frequency doubled, tripled or quadrupled, in so-called "diode pumped solid state" or DPSS lasers. Under second, third, or fourth harmonic generation these produce 532 nm (green, visible), 355 nm and 266 nm (UV) beams. This is the technology behind the bright laser pointers particularly at green (532 nm) and other short visible wavelengths.
Ytterbium, holmium, thulium, and erbium are other common "dopants" in solid-state lasers. Ytterbium is used in crystals such as Yb:YAG, Yb:KGW, Yb:KYW, Yb:SYS, Yb:BOYS, Yb:CaF2, typically operating around 1020-1050 nm. They are potentially very efficient and high powered due to a small quantum defect. Extremely high powers in ultrashort pulses can be achieved with Yb:YAG. Holmium-doped YAG crystals emit at 2097 nm and form an efficient laser operating at infrared wavelengths strongly absorbed by water-bearing tissues. The Ho-YAG is usually operated in a pulsed mode, and passed through optical fiber surgical devices to resurface joints, remove rot from teeth, vaporize cancers, and pulverize kidney and gall stones.
Titanium-doped sapphire (Ti:sapphire) produces a highly tunable infrared laser, commonly used for spectroscopy. It is also notable for use as a mode-locked laser producing ultrashort pulses of extremely high peak power.
Thermal limitations in solid-state lasers arise from unconverted pump power that manifests itself as heat. This heat, when coupled with a high thermo-optic coefficient (d''n''/d''T'') can give rise to thermal lensing as well as reduced quantum efficiency. These types of issues can be overcome by another novel diode-pumped solid-state laser, the diode-pumped thin disk laser. The thermal limitations in this laser type are mitigated by using a laser medium geometry in which the thickness is much smaller than the diameter of the pump beam. This allows for a more even thermal gradient in the material. Thin disk lasers have been shown to produce up to kilowatt levels of power.
Solid-state lasers or laser amplifiers where the light is guided due to the total internal reflection in a single mode optical fiber are instead called fiber lasers. Guiding of light allows extremely long gain regions providing good cooling conditions; fibers have high surface area to volume ratio which allows efficient cooling. In addition, the fiber's waveguiding properties tend to reduce thermal distortion of the beam. Erbium and ytterbium ions are common active species in such lasers.
Quite often, the fiber laser is designed as a double-clad fiber. This type of fiber consists of a fiber core, an inner cladding and an outer cladding. The index of the three concentric layers is chosen so that the fiber core acts as a single-mode fiber for the laser emission while the outer cladding acts as a highly multimode core for the pump laser. This lets the pump propagate a large amount of power into and through the active inner core region, while still having a high numerical aperture (NA) to have easy launching conditions.
Pump light can be used more efficiently by creating a fiber disk laser, or a stack of such lasers.
Fiber lasers have a fundamental limit in that the intensity of the light in the fiber cannot be so high that optical nonlinearities induced by the local electric field strength can become dominant and prevent laser operation and/or lead to the material destruction of the fiber. This effect is called photodarkening. In bulk laser materials, the cooling is not so efficient, and it is difficult to separate the effects of photodarkening from the thermal effects, but the experiments in fibers show that the photodarkening can be attributed to the formation of long-living color centers.
Photonic crystal lasers are lasers based on nano-structures that provide the mode confinement and the
density of optical states (DOS) structure required for the feedback to take place. They are typical micrometre-sized and tunable on the bands of the photonic crystals.
Semiconductor lasers are
diodes which are electrically pumped. Recombination of electrons and holes created by the applied current introduces optical gain. Reflection from the ends of the crystal form an optical resonator, although the resonator can be external to the semiconductor in some designs.
Commercial laser diodes emit at wavelengths from 375 nm to 3500 nm. Low to medium power laser diodes are used in laser printers and CD/DVD players. Laser diodes are also frequently used to optically pump other lasers with high efficiency. The highest power industrial laser diodes, with power up to 10 kW (70dBm), are used in industry for cutting and welding. External-cavity semiconductor lasers have a semiconductor active medium in a larger cavity. These devices can generate high power outputs with good beam quality, wavelength-tunable narrow-linewidth radiation, or ultrashort laser pulses.
Vertical cavity surface-emitting lasers (VCSELs) are semiconductor lasers whose emission direction is perpendicular to the surface of the wafer. VCSEL devices typically have a more circular output beam than conventional laser diodes, and potentially could be much cheaper to manufacture. As of 2005, only 850 nm VCSELs are widely available, with 1300 nm VCSELs beginning to be commercialized, and 1550 nm devices an area of research. VECSELs are external-cavity VCSELs. Quantum cascade lasers are semiconductor lasers that have an active transition between energy ''sub-bands'' of an electron in a structure containing several quantum wells.
The development of a silicon laser is important in the field of optical computing. Silicon is the material of choice for integrated circuits, and so electronic and silicon photonic components (such as optical interconnects) could be fabricated on the same chip. Unfortunately, silicon is a difficult lasing material to deal with, since it has certain properties which block lasing. However, recently teams have produced silicon lasers through methods such as fabricating the lasing material from silicon and other semiconductor materials, such as indium(III) phosphide or gallium(III) arsenide, materials which allow coherent light to be produced from silicon. These are called hybrid silicon laser. Another type is a Raman laser, which takes advantage of Raman scattering to produce a laser from materials such as silicon.
Dye lasers use an organic dye as the gain medium. The wide gain spectrum of available dyes, or mixtures of dyes, allows these lasers to be highly tunable, or to produce very short-duration pulses (
on the order of a few
femtoseconds). Although these
tunable lasers are mainly known in their liquid form, researchers have also demonstrated narrow-linewidth tunable emission in dispersive oscillator configurations incorporating solid-state dye gain media. In their most prevalent form these
solid state dye lasers use dye-doped polymers as laser media.
Free electron lasers, or FELs, generate coherent, high power radiation, that is widely tunable, currently ranging in wavelength from microwaves, through
terahertz radiation and infrared, to the visible spectrum, to soft X-rays. They have the widest frequency range of any laser type. While FEL beams share the same optical traits as other lasers, such as coherent radiation, FEL operation is quite different. Unlike gas, liquid, or solid-state lasers, which rely on bound atomic or molecular states, FELs use a relativistic electron beam as the lasing medium, hence the term ''free electron''.
Living cells can be genetically engineered to produce
Green fluorescent protein (GFP). The GFP is used as the laser's "gain medium", where light amplification takes place. The cells are then placed between two tiny mirrors, just 20 millionths of a metre across, which acted as the "laser cavity" in which light could bounce many times through the cell. Upon bathing the cell with blue light, it could be seen to emit directed and intense green laser light.
In September 2007, the
BBC News reported that there was speculation about the possibility of using
positronium annihilation to drive a very powerful
gamma ray laser. Dr. David Cassidy of the
University of California, Riverside proposed that a single such laser could be used to ignite a
nuclear fusion reaction, replacing the banks of hundreds of lasers currently employed in
inertial confinement fusion experiments.
Space-based X-ray lasers pumped by a nuclear explosion have also been proposed as antimissile weapons. Such devices would be one-shot weapons.
When lasers were invented in 1960, they were called "a solution looking for a problem". Since then, they have become ubiquitous, finding utility in thousands of highly varied applications in every section of modern society, including consumer electronics, information technology, science, medicine, industry, law enforcement, entertainment, and the military.
The first use of lasers in the daily lives of the general population was the supermarket barcode scanner, introduced in 1974. The laserdisc player, introduced in 1978, was the first successful consumer product to include a laser but the compact disc player was the first laser-equipped device to become common, beginning in 1982 followed shortly by laser printers.
Some other uses are:
Medicine: Bloodless surgery, laser healing, surgical treatment, kidney stone treatment, eye treatment, dentistry
Industry: Cutting, welding, material heat treatment, marking parts, non-contact measurement of parts
Military: Marking targets, guiding munitions, missile defence, electro-optical countermeasures (EOCM), alternative to radar, blinding troops.
Law enforcement: used for latent
fingerprint detection in the
forensic identification field
Research: Spectroscopy, laser ablation, laser annealing, laser scattering, laser interferometry, LIDAR, laser capture microdissection, fluorescence microscopy
Product development/commercial: laser printers, optical discs (e.g. CDs and the like), barcode scanners, thermometers, laser pointers, holograms, bubblegrams.
Laser lighting displays: Laser light shows
Cosmetic skin treatments: acne treatment, cellulite and striae reduction, and hair removal.
In 2004, excluding diode lasers, approximately 131,000 lasers were sold with a value of US$2.19 billion. In the same year, approximately 733 million diode lasers, valued at $3.20 billion, were sold.
Different applications need lasers with different output powers. Lasers that produce a continuous beam or a series of short pulses can be compared on the basis of their average power. Lasers that produce pulses can also be characterized based on the ''peak'' power of each pulse. The peak power of a pulsed laser is many
orders of magnitude greater than its average power. The average output power is always less than the power consumed.
+ The continuous or average power required for some uses:
|
Power !! Use
|
|
Laser pointers
|
|
CD-ROM drive
|
align=right | |
DVD player or DVD-ROM drive
|
align=right | |
High-speed CD-RW burner
|
align=right | |
Consumer 16x DVD-R burner
|
style="text-align:right;" rowspan="2" | |
Burning through a jewel case including disk within
|
DVD 24x dual-layer recording.
|
|
Green laser in current Holographic Versatile Disc prototype development
|
align=right | |
Micromachinery>micro machining
|
align=right | |
Typical sealed CO2 surgical lasers
|
align=right | |
Typical sealed CO2 lasers used in industrial laser cutting
|
align=right | |
Output power achieved by a diode laser bar
|
align=right | |
Claimed output of a CO2 laser being developed by Northrop Grumman for military (weapon) applications
|
Examples of pulsed systems with high peak power:
700 TW (700×1012 W) – National Ignition Facility, a 192-beam, 1.8-megajoule laser system adjoining a 10-meter-diameter target chamber.
1.3 PW (1.3×1015 W) – world's most powerful laser as of 1998, located at the Lawrence Livermore Laboratory
In recent years, some hobbyists have taken interests in lasers. Lasers used by hobbyists are generally of class IIIa or IIIb, although some have made their own class IV types. However, compared to other hobbyists, laser hobbyists are far less common, due to the cost and potential dangers involved. Due to the cost of lasers, some hobbyists use inexpensive means to obtain lasers, such as salvaging laser diodes from broken DVD players (red),
Blu-ray players (violet), or even higher power laser diodes from CD or
DVD burners.
Hobbyists also have been taking surplus pulsed lasers from retired military applications and modifying them for pulsed holography. Pulsed Ruby and pulsed YAG lasers have been used.
Even the first laser was recognized as being potentially dangerous.
Theodore Maiman characterized the first laser as having a power of one "Gillette" as it could burn through one
Gillette razor blade. Today, it is accepted that even low-power lasers with only a few milliwatts of output power can be hazardous to human eyesight, when the beam from such a laser hits the eye directly or after reflection from a shiny surface. At wavelengths which the
cornea and the lens can focus well, the coherence and low divergence of laser light means that it can be focused by the
eye into an extremely small spot on the
retina, resulting in localized burning and permanent damage in seconds or even less time.
Lasers are usually labeled with a safety class number, which identifies how dangerous the laser is:
Class I/1 is inherently safe, usually because the light is contained in an enclosure, for example in CD players.
Class II/2 is safe during normal use; the blink reflex of the eye will prevent damage. Usually up to 1 mW power, for example laser pointers.
Class IIIa/3R lasers are usually up to 5 mW and involve a small risk of eye damage within the time of the blink reflex. Staring into such a beam for several seconds is likely to cause damage to a spot on the retina.
Class IIIb/3B can cause immediate eye damage upon exposure.
Class IV/4 lasers can burn skin, and in some cases, even scattered light can cause eye and/or skin damage. Many industrial and scientific lasers are in this class.
The indicated powers are for visible-light, continuous-wave lasers. For pulsed lasers and invisible wavelengths, other power limits apply. People working with class 3B and class 4 lasers can protect their eyes with safety goggles which are designed to absorb light of a particular wavelength.
Certain infrared lasers with wavelengths beyond about 1.4 micrometres are often referred to as being "eye-safe". This is because the intrinsic molecular vibrations of water molecules very strongly absorb light in this part of the spectrum, and thus a laser beam at these wavelengths is attenuated so completely as it passes through the eye's cornea that no light remains to be focused by the lens onto the retina. The label "eye-safe" can be misleading, however, as it only applies to relatively low power continuous wave beams; any high power or Q-switched laser at these wavelengths can burn the cornea, causing severe eye damage.
Laser beams are famously employed as weapon systems in science fiction, but
actual laser weapons are still in the experimental stage. The general idea of laser-beam weaponry is to hit a target with a train of brief pulses of light. The rapid evaporation and expansion of the surface causes shockwaves that damage the target. The power needed to project a high-powered laser beam of this kind is
beyond the limit of current mobile power technology thus favoring chemically powered
gas dynamic lasers.
Lasers of all but the lowest powers can potentially be used as incapacitating weapons, through their ability to produce temporary or permanent vision loss in varying degrees when aimed at the eyes. The degree, character, and duration of vision impairment caused by eye exposure to laser light varies with the power of the laser, the wavelength(s), the collimation of the beam, the exact orientation of the beam, and the duration of exposure. Lasers of even a fraction of a watt in power can produce immediate, permanent vision loss under certain conditions, making such lasers potential non-lethal but incapacitating weapons. The extreme handicap that laser-induced blindness represents makes the use of lasers even as non-lethal weapons morally controversial, and weapons designed to cause blindness have been banned by the Protocol on Blinding Laser Weapons. The U.S. Air Force is currently working on the Boeing YAL-1 airborne laser, mounted in a Boeing 747, to shoot down enemy ballistic missiles over enemy territory.
In the field of aviation, the hazards of exposure to ground-based lasers deliberately aimed at pilots have grown to the extent that aviation authorities have special procedures to deal with such hazards.
On March 18, 2009 Northrop Grumman claimed that its engineers in Redondo Beach had successfully built and tested an electrically powered solid state laser capable of producing a 100-kilowatt beam, powerful enough to destroy an airplane. According to Brian Strickland, manager for the United States Army's Joint High Power Solid State Laser program, an electrically powered laser is capable
of being mounted in an aircraft, ship, or other vehicle because it requires much less space for its supporting equipment than a chemical laser. However the source of such a large electrical power in a mobile application remains unclear.
Several
novelists described devices similar to lasers, prior to the discovery of
stimulated emission:
A laser-like device was described in Alexey Tolstoy's science fiction novel ''The Hyperboloid of Engineer Garin'' in 1927.
Mikhail Bulgakov exaggerated the biological effect (laser bio stimulation) of intensive red light in his science fiction novel ''Fatal Eggs'' (1925), without any reasonable description of the source of this red light. (In that novel, the red light first appears occasionally from the illuminating system of an advanced microscope; then the protagonist Prof. Persikov arranges the special set-up for generation of the red light.)
Bessel beam
Coherent perfect absorber
dazzler (weapon)
Free-space optical communication
Homogeneous broadening
Induced gamma emission
Injection seeder
International Laser Display Association
Laser accelerometer
Lasers and aviation safety
Laser beam profiler
Laser bonding
Laser converting
Laser cooling
Laser engraving
Laser medicine
Laser scalpel
3D scanner
Laser turntable
Laser beam welding
List of laser articles
List of light sources
Mercury laser
Nanolaser
Reference beam
Rytov number
Sound Amplification by Stimulated Emission of Radiation SASER
Selective laser sintering
Spaser
Speckle pattern
Tophat beam
;Notes
;Further reading
:Books
Bertolotti, Mario (1999, trans. 2004). ''The History of the Laser'', Institute of Physics. ISBN 0-7503-0911-3
Csele, Mark (2004). ''Fundamentals of Light Sources and Lasers'', Wiley. ISBN 0-471-47660-9
Koechner, Walter (1992). ''Solid-State Laser Engineering'', 3rd ed., Springer-Verlag. ISBN 0-387-53756-2
Siegman, Anthony E. (1986). ''Lasers'', University Science Books. ISBN 0-935702-11-3
Silfvast, William T. (1996). ''Laser Fundamentals'', Cambridge University Press. ISBN 0-521-55617-1
Svelto, Orazio (1998). ''Principles of Lasers'', 4th ed. (trans. David Hanna), Springer. ISBN 0-306-45748-2
Wilson, J. & Hawkes, J.F.B. (1987). ''Lasers: Principles and Applications'', Prentice Hall International Series in Optoelectronics, Prentice Hall. ISBN 0-13-523697-5
Yariv, Amnon (1989). ''Quantum Electronics'', 3rd ed., Wiley. ISBN 0-471-60997-8
Bromberg, Joan Lisa (1991). ''The Laser in America, 1950-1970'', MIT Press. ISBN 978-0-262-02318-4
:Periodicals
''Applied Physics B: Lasers and Optics'' ()
''IEEE Journal of Lightwave Technology'' ()
''IEEE Journal of Quantum Electronics'' ()
''IEEE Journal of Selected Topics in Quantum Electronics'' ()
''IEEE Photonics Technology Letters'' ()
''Journal of the Optical Society of America B: Optical Physics'' ()
''Laser Focus World'' ()
''Optics Letters'' ()
''Photonics Spectra'' ()
Encyclopedia of laser physics and technology by Dr. Rüdiger Paschotta
A Practical Guide to Lasers for Experimenters and Hobbyists by Samuel M. Goldwasser
Homebuilt Lasers Page by Professor Mark Csele
Powerful laser is 'brightest light in the universe' - The world's most powerful laser as of 2008 might create supernova-like shock waves and possibly even antimatter (''New Scientist'', 9 April 2008)
Homemade laser project by Kip Kedersha
"The Laser: basic principles" an online course by Prof. F. Balembois and Dr. S. Forget. ''Instrumentation for Optics'', 2008
Northrop Grumman's Press Release on the Firestrike 15kw tactical laser product.
Website on Lasers 50th anniversary by APS, OSA, SPIE
Advancing the Laser anniversary site by SPIE: Video interviews, open-access articles, posters, DVDs
Bright Idea: The First Lasers
Free software for Simulation of random laser dynamics
Video Demonstrations in Lasers and Optics Produced by the Massachusetts Institute of Technology (MIT). Real-time effects are demonstrated in a way that would be difficult to see in a classroom setting.
Virtual Museum of Laser History, from the touring exhibit by SPIE
Category:Acronyms
Category:American inventions
Category:Directed-energy weapons
Category:Forensic equipment
Category:Orphan initialisms
Category:Photonics
Category:Quantum optics
af:Laser
ang:Lēohtfȳsend
ar:ليزر
az:Lazer
bg:Лазер
bar:LASER
bs:Laser
ca:Làser
cs:Laser
cy:Laser
da:Laser
de:Laser
et:Laser
el:Λέιζερ
es:Láser
eo:Lasero
fa:لیزر
fr:Laser
fy:Laser
gl:Láser
gan:激光
gu:લેસર
ko:레이저
hy:Լազեր
hi:लेसर विज्ञान
hr:Laser
id:Laser
it:Laser
he:לייזר
jv:Laser
ka:ლაზერი
kk:Лазер
ht:Lazè
lv:Lāzers
lt:Lazeris
hu:Lézer
mk:Ласер
ml:ലേസർ
ms:Laser
nl:Laser (licht)
ja:レーザー
no:Laser
nn:Laser
uz:Lazer
pl:Laser
pt:Laser
ro:Laser
rue:Ласер
ru:Лазер
stq:Laser
sq:Lazeri
scn:Laser
si:ලේස'
simple:Laser
sk:Laser
sl:Laser
sr:Ласер
sh:Laser
fi:Laser
sv:Laser
ta:சீரொளி
te:లేజర్
th:เลเซอร์
tr:Lazer
uk:Лазер
ur:ترتاش
ug:لازېر نۇرى
vi:Laser
fiu-vro:Lasõr
war:Laser
yi:לאזער
zh-yue:激光
zh:激光