A blast furnace is a type of metallurgical furnace used for smelting to produce industrial metals, generally iron.
In a blast furnace, fuel and ore and flux (limestone) are continuously supplied through the top of the furnace, while air (sometimes with oxygen enrichment) is blown into the bottom of the chamber, so that the chemical reactions take place throughout the furnace as the material moves downward. The end products are usually molten metal and slag phases tapped from the bottom, and flue gases exiting from the top of the furnace. The downward flow of the ore and flux in contact with an upflow of hot combustion gases is a countercurrent exchange process.
Blast furnaces are to be contrasted with air furnaces (such as reverberatory furnaces), which were naturally aspirated, usually by the convection of hot gases in a chimney flue. According to this broad definition, bloomeries for iron, blowing houses for tin, and smelt mills for lead would be classified as blast furnaces. However, the term has usually been limited to those used for smelting iron ore to produce pig iron, an intermediate material used in the production of commercial iron and steel.
The blast furnace is distinguished from the bloomery in that the object of the blast furnace is to produce molten metal that can be tapped from the furnace, whereas the intention in the bloomery is to avoid it melting so that carbon does not become dissolved in the iron. Bloomeries were also artificially blown using bellows, but the term ''blast furnace'' is normally reserved for furnaces where iron (or another metal) is refined from ore. Also, a blast furnace is countercurrent exchange process whereas a bloomery is not.
The oldest extant blast furnaces were built during the Han Dynasty of China in the 1st century BC. However, cast iron farm tools and weapons were widespread in China by the 5th century BC, while 3rd century BC iron smelters employed an average workforce of over two hundred men. These early furnaces had clay walls and used phosphorus-containing minerals as a flux. The effectiveness of the Chinese blast furnace was enhanced during this period by the engineer Du Shi (c. 31 AD), who applied the power of waterwheels to piston-bellows in forging cast iron.
While it was long thought that the Chinese had developed the blast furnace and cast iron as their first method of iron production, Donald Wagner (the author of the above referenced study) has published a more recent paper that supersedes some of the statements in the earlier work; the newer paper still places the date of the first cast-iron artifacts at the 4th and 5th centuries BC, but also provides evidence of earlier bloomery furnace use, which migrated in from the West during the beginning of the Chinese Bronze Age of the late Longshan culture (2000 BC). He suggests that early blast furnace and cast iron production evolved from furnaces used to melt bronze. Certainly, though, iron was essential to military success by the time the State of Qin had unified China (221 BC). By the 11th century, the Song Dynasty Chinese iron industry made a remarkable switch of resources from charcoal to bituminous coal in casting iron and steel, sparing thousands of acres of woodland from felling. This may have happened as early as the 4th century AD.
The Chinese blast furnace remained in use well until the 20th century. The backyard furnaces favoured by Mao Zedong during the Great Leap Forward were of this type. In the regions with strong traditions of metallurgy, the steel production actually increased during this period. In the regions where there was no tradition of steelmaking or where the ironmasters knowing the traditional skills or the scientific principles of the blast furnace process had been killed, the results were less than satisfactory.
In Europe, the Greeks, Celts, Romans, and Carthaginians all used this process. Several examples have been found in France, and materials found in Tunisia suggest they were used there as well as in Antioch during the Hellenistic Period. Though little is known of it during the Dark Ages, the process probably continued in use. Similarly, smelting in bloomery-type furnaces in West Africa and forging for tools appear in the Nok culture in Africa by 500 BC. The earliest records of bloomery-type furnaces in East Africa are discoveries of smelted iron and carbon in Nubia and Axum that date back between 1,000-500 BCE. Particularly in Meroe, there are known to have been ancient bloomeries that produced metal tools for the Nubians and Kushites and produced surplus for their economy.
Modern experimental archaeology and history re-enactment have shown there is only a very short step from the Catalan forge to the true blast furnace, where the iron is gained as pig iron in liquid phase. Usually, obtaining the iron in liquid phase is actually undesired, and the temperature is intentionally kept below the melting point of iron, since while removing the solid bloom mechanically is tedious and means batch process instead of continuous process, it is almost pure iron and can be worked immediately. On the other hand, pig iron is the eutectic mixture of carbon and iron and needs to be decarburized to produce steel or wrought iron, which was extremely tedious in the Middle Ages.
The oldest known blast furnaces in the West were built in Dürstel in Switzerland, the Märkische Sauerland in Germany, and at Lapphyttan in Sweden, where the complex was active between 1150 and 1350. At Noraskog in the Swedish county of Järnboås, there have also been found traces of blast furnaces dated even earlier, possibly to around 1100. These early blast furnaces, like the Chinese examples, were very inefficient compared to those used today. The iron from the Lapphyttan complex was used to produce balls of wrought iron known as osmonds, and these were traded internationally – a possible reference occurs in a treaty with Novgorod from 1203 and several certain references in accounts of English customs from the 1250s and 1320s. Other furnaces of the 13th to 15th centuries have been identified in Westphalia.
Knowledge of certain technological advances was transmitted as a result of the General Chapter of the Cistercian monks. This may have included the blast furnace, as the Cistercians are known to have been skilled metallurgists. According to Jean Gimpel, their high level of industrial technology facilitated the diffusion of new techniques: "Every monastery had a model factory, often as large as the church and only several feet away, and waterpower drove the machinery of the various industries located on its floor." Iron ore deposits were often donated to the monks along with forges to extract the iron, and within time surpluses were being offered for sale. The Cistercians became the leading iron producers in Champagne, France, from the mid-13th century to the 17th century, also using the phosphate-rich slag from their furnaces as an agricultural fertilizer.
Archaeologists are still discovering the extent of Cistercian technology. At Laskill, an outstation of Rievaulx Abbey and the only medieval blast furnace so far identified in Britain, the slag produced was low in iron content. Slag from other furnaces of the time contained a substantial concentration of iron, whereas Laskill is believed to have produced cast iron quite efficiently. Its date is not yet clear, but it probably did not survive until Henry VIII's Dissolution of the Monasteries in the late 1530s, as an agreement (immediately after that) concerning the "smythes" with the Earl of Rutland in 1541 refers to blooms. Nevertheless, the means by which the blast furnace spread in medieval Europe has not finally been determined.
The first British furnaces outside the Weald appeared during the 1550s, and many were built in the remainder of that century and the following ones. The output of the industry probably peaked about 1620, and was followed by a slow decline until the early 18th century. This was apparently because it was more economic to import iron from Sweden and elsewhere than to make it in some more remote British locations. Charcoal that was economically available to the industry was probably being consumed as fast as the wood to make it grew. The Backbarrow blast furnace built in Cumbria in 1711 has been described as the first efficient example.
The first blast furnace in Russia opened in 1637 near Tula and was called the Gorodishche Works. The blast furnace spread from here to the central Russia and then finally to the Urals.
The precursors of blast furnaces, bloomeries, have also been discovered and recorded to have been created in medieval West Africa with some of the metalworking Bantu civilizations such as the Bunyoro Empire and the Nyoro people.
A further important development was the change to hot blast, patented by James Beaumont Neilson at Wilsontown Ironworks in Scotland in 1828. This further reduced production costs. Within a few decades, the practice was to have a "stove" as large as the furnace next to it into which the waste gas (containing CO) from the furnace was directed and burnt. The resultant heat was used to preheat the air blown into the furnace.
A further significant development was the application of raw anthracite coal to the blast furnace, first tried successfully by George Crane at Ynyscedwyn ironworks in south Wales in 1837. It was taken up in America by the Lehigh Crane Iron Company at Catasauqua, Pennsylvania, in 1839.
This is a great increase from the typical 18th-century furnaces, which averaged about 360 tonnes (400 short tons) per year. Variations of the blast furnace, such as the Swedish electric blast furnace, have been developed in countries which have no native coal resources.
Modern furnaces are equipped with an array of supporting facilities to increase efficiency, such as ore storage yards where barges are unloaded. The raw materials are transferred to the stockhouse complex by ore bridges, or rail hoppers and ore transfer cars. Rail-mounted scale cars or computer controlled weight hoppers weigh out the various raw materials to yield the desired hot metal and slag chemistry. The raw materials are brought to the top of the blast furnace via a skip car powered by winches or conveyor belts.
There are different ways in which the raw materials are charged into the blast furnace. Some blast furnaces use a "double bell" system where two "bells" are used to control the entry of raw material into the blast furnace. The purpose of the two bells is to minimize the loss of hot gases in the blast furnace. First, the raw materials are emptied into the upper or small bell. The bell is then rotated a predetermined amount to distribute the charge more accurately. The small bell then opens to empty the charge into the large bell. The small bell then closes, to seal the blast furnace, while the large bell dispenses the charge into the blast furnace. A more recent design is to use a "bell-less" system. These systems use multiple hoppers to contain each raw material, which is then discharged into the blast furnace through valves. These valves are more accurate at controlling how much of each constituent is added, as compared to the skip or conveyor system, thereby increasing the efficiency of the furnace. Some of these bell-less systems also implement a chute in order to precisely control where the charge is placed.
The iron making blast furnace itself is built in the form of a tall chimney-like structure lined with refractory brick. Coke, limestone flux, and iron ore (iron oxide) are charged into the top of the furnace in a precise filling order which helps control gas flow and the chemical reactions inside the furnace. Four "uptakes" allow the hot, dirty gas to exit the furnace dome, while "bleeder valves" protect the top of the furnace from sudden gas pressure surges. When plugged, bleeder valves need to be cleaned with a bleeder cleaner. The coarse particles in the gas settle in the "dust catcher" and are dumped into a railroad car or truck for disposal, while the gas itself flows through a venturi scrubber and a gas cooler to reduce the temperature of the cleaned gas.
The "casthouse" at the bottom half of the furnace contains the bustle pipe, tuyeres and the equipment for casting the liquid iron and slag. Once a "taphole" is drilled through the refractory clay plug, liquid iron and slag flow down a trough through a "skimmer" opening, separating the iron and slag. Modern, larger blast furnaces may have as many as four tapholes and two casthouses. Once the pig iron and slag has been tapped, the taphole is again plugged with refractory clay.
The tuyeres are used to implement a hot blast, which is used to increase the efficiency of the blast furnace. The hot blast is directed into the furnace through water-cooled copper nozzles called tuyeres near the base. The hot blast temperature can be from 900 °C to 1300 °C (1600 °F to 2300 °F) depending on the stove design and condition. The temperatures they deal with may be 2000 °C to 2300 °C (3600 °F to 4200 °F). Oil, tar, natural gas, powdered coal and oxygen can also be injected into the furnace at tuyere level to combine with the coke to release additional energy which is necessary to increase productivity.
:Fe2O3 + 3CO → 2Fe + 3CO2
This reaction might be divided into multiple steps, with the first being that preheated blast air blown into the furnace reacts with the carbon in the form of coke to produce carbon monoxide and heat:
:2 C''(s)'' + O2''(g)'' → 2 CO''(g)''
The hot carbon monoxide is the reducing agent for the iron ore and reacts with the iron oxide to produce molten iron and carbon dioxide. Depending on the temperature in the different parts of the furnace (warmest at the bottom) the iron is reduced in several steps. At the top, where the temperature usually is in the range between 200 °C and 700 °C, the iron oxide is partially reduced to iron(II,III) oxide, Fe3O4.
:3 Fe2O3''(s)'' + CO''(g)'' → 2 Fe3O4''(s)'' + CO2''(g)''
At temperatures around 850 °C, further down in the furnace, the iron(II,III) is reduced further to iron(II) oxide:
:Fe3O4''(s)'' + CO''(g)'' → 3 FeO''(s)'' + CO2''(g)''
Hot carbon dioxide, unreacted carbon monoxide, and nitrogen from the air pass up through the furnace as fresh feed material travels down into the reaction zone. As the material travels downward, the counter-current gases both preheat the feed charge and decompose the limestone to calcium oxide and carbon dioxide:
:CaCO3''(s)'' → CaO''(s)'' + CO2''(g)''
As the iron(II) oxide moves down to the area with higher temperatures, ranging up to 1200 °C degrees, it is reduced further to iron metal:
:FeO''(s)'' + CO''(g)'' → Fe''(s)'' + CO2''(g)''
The carbon dioxide formed in this process is re-reduced to carbon monoxide by the coke:
:C''(s)'' + CO2''(g)'' → 2 CO''(g)''
The temperature-dependent equilibrium controlling the gas atmosphere in the furnace is called the Boudouard reaction:
::2CO CO2 + C
The decomposition of limestone in the middle zones of the furnace proceeds according to the following reaction:
:CaCO3 → CaO + CO2
The calcium oxide formed by decomposition reacts with various acidic impurities in the iron (notably silica), to form a fayalitic slag which is essentially calcium silicate, CaSiO3: :SiO2 + CaO → CaSiO3
The "pig iron" produced by the blast furnace has a relatively high carbon content of around 4–5%, making it very brittle, and of limited immediate commercial use. Some pig iron is used to make cast iron. The majority of pig iron produced by blast furnaces undergoes further processing to reduce the carbon content and produce various grades of steel used for tools and construction materials.
Although the efficiency of blast furnaces is constantly evolving, the chemical process inside the blast furnace remains the same. According to the American Iron and Steel Institute: "Blast furnaces will survive into the next millennium because the larger, efficient furnaces can produce hot metal at costs competitive with other iron making technologies." One of the biggest drawbacks of the blast furnaces is the inevitable carbon dioxide production as iron is reduced from iron oxides by carbon and there is no economical substitute – steelmaking is one of the unavoidable industrial contributors of the CO2 emissions in the world (see greenhouse gases).
The challenge set by the greenhouse gas emissions of the blast furnace is being addressed in an on-going European Program called ULCOS (Ultra Low CO2 Steelmaking). Several new process routes have been proposed and investigated in depth to cut specific emissions (CO2 per ton of steel) by at least 50%. Some rely on the capture and further storage (CCS) of CO2, while others choose decarbonizing iron and steel production, by turning to hydrogen, electricity and biomass. In the nearer term, a technology that incorporates CCS into the blast furnace process itself and is called the Top-Gas Recycling Blast Furnace is under development, with a scale-up to a commercial size blast furnace under way. The technology should be fully demonstrated by the end of the 2010s, in line with the timeline set, for example, by the EU to cut emissions significantly. Broad deployment could take place from 2020 on.
Category:Industrial furnaces Category:Industrial Revolution Category:Metallurgy Category:Steelmaking
ar:فرن لافح bs:Visoka peć ca:Alt forn cs:Vysoká pec da:Højovn de:Hochofen es:Alto horno eo:Altforno eu:Labe garai fa:کوره بلند fr:Haut fourneau gl:Alto forno ko:용광로 hi:ब्लास्ट फर्नेस it:Altoforno he:כבשן#תנור רם kn:ಊದುಕುಲುಮೆ kk:Домна lb:Héichuewen hu:Nagyolvasztó nl:Hoogoven ja:高炉 no:Masovn nn:Masomn pl:Wielki piec pt:Alto-forno ro:Furnal ru:Доменная печь simple:Blast furnace sk:Vysoká pec sl:Plavž sr:Висока пећ fi:Masuuni sv:Masugn te:బ్లాస్ట్ ఫర్నేస్ tr:Yüksek fırın uk:Доменна піч zh:高爐This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.