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I. Introduction* 
 
The aggregate production function (APF) is a fundamental neoclassical construct. It is widely used at a theoretical 
level, in micro- and macroeconomics, in growth theory, in labor economics, in international trade theory, indeed, in 
virtually every branch of economic analysis (Solow, 1987, p. 15; Felipe and Adams, 2001, pp. 2-3). It is equally 
ubiquitous at the empirical level, where it is used to analyze the determinants of growth, technical change, 
productivity growth, capacity utilization, and so on. Almost half a century after Solow's celebrated article (Solow, 
1957), it still remains the method of accounting for the determinants of national and international growth  
 
And yet it has been known for a long time that the theoretical foundations of this construct are extraordinarily shaky, 
because it simply cannot be grounded in any plausible micro-foundations (Samuelson 1962, 1966, 1979; Garegnani 
1970; Fisher 1971a, 1971b, 1987, 1992; Harcourt, 1972, 1976, 1994; Solow 1987, p. 25; McCombie 2000-2001, p. 
268;  Felipe and Holz 1999, Felipe and Adams 2001).  It is curious, therefore, that a tradition which insists on the 
necessity of micro-foundations should also continue to rely so heavily on a construction which cannot be derived 
from micro-foundations. How is this justified? 
 
Defenders claim that aggregate production functions are worth retaining because they possess important virtues in 
themselves, and because they appear to 'work' at an empirical level. Paul Douglas, the very originator of this 
tradition, expresses this sentiment most openly.  
 

A considerable body of independent work tends to corroborate the original Cobb-Douglas formula, but, 
more important, the approximate coincidence of the estimated coefficients with the actual shares received 
also strengthens the competitive theory of distribution and disproves the Marxian (Douglas, 1976, p. 914, 
cited in McCombie and Dixon, 1991, p. 24).  

 
Robert Solow, by far the most important contributor to this tradition, takes a more nuanced position. But in the end 
he too comes down on the same side.  
 

The current state of play with respect to the estimation and use of aggregate production functions is best 
described as Determined Ambivalence. We all do it and we all do it with a bad conscience…One or more 
aggregate production functions is an essential part of every complete macro-econometric model …It seems 
inevitable…There seems no practical alternative… [Yet, n]obody thinks there is such a thing as a 'true' 
aggregate production function. Using an estimate of a relation that does not exist is bound to make one 
uncomfortable (Solow 1987, p. 15).  
 

In spite of these misgivings, Solow (1987) returns to the central theme: aggregate production functions continue to 
be used because, at least sometimes, they appear to 'work'. And here, he refers not only to their ability to provide "a 
practical way of representing the relation between the availability of inputs and the capacity to produce output" (p. 
16), but also to "their ability to reproduce the distributional facts". He notes that this latter aspect "does reinforce the 
marginal productivity theory … of distribution", just as Douglas had himself claimed, even though such a claim "is 
far from airtight [since] … the coincidence could occur in many other ways" (p. 17).   
 
It is worth emphasizing that a 'good' empirical fit between aggregate output and variables such as capital, labor and 
time can arise from a wide variety of functional forms, ranging from ones with entirely fixed input-output 
coefficients to those with smoothly variable ones. But even in the latter case, a good fit does not necessarily imply 
support for neoclassical theory.  Two further things are required. First, that the smoothly varying coefficients be 
embodied in a functional form consistent with a 'well- behaved' neoclassical aggregate production function (Cobb-
Douglas, CES, Translog, etc.).  And second, that the fitted function yield estimated output elasticities which 
correspond to observed wage and profit (factor) shares. As Solow once remarked early on, "had Douglas found 
[parameters which implied] labor's share to be 25 per cent and capital's 75 per cent, we should not now be talking 
about aggregate production functions" (McCombie 2000-2001, p. 269, footnote 1, quoting a remark by Solow to 
Fisher, cited in Fisher 1971a). 
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And so we are led to the central questions underlying the debate around the use of neoclassical aggregate production 
functions. Is it really true that aggregate production functions generally 'work' in the sense of giving not only a good 
fit but also the 'right' coefficients? When they do work, can this be taken as evidence of support for the neoclassical 
theory of production and income distribution? And finally, can they be used in any case to provide reliable measures 
of technical change and a decomposition of the sources of growth?  
 
To address the issues involved, we will make use of two very different data sets. The first set is the actual data for 
the US economy, consisting of real output (real GDP), total employment, total real private fixed capital, and 
corresponding measures of real wages, profit rates, labor productivity and the capital-labor ratio. The second set is a 
simulated data series derived from a slightly modified version of Goodwin's formalization of Marx's theory of 
persistent unemployment. This latter model is decidedly non-neoclassical, since it assumes a fixed coefficient 
technology at any moment of time (so that actual marginal products cannot even be defined) and Harrod-Neutral 
technical change over time (so that not even 'surrogate' marginal products, in the sense of Samuelson, can be found). 
So we have one data set whose provenance is the object of considerable debate, and a control group whose 
provenance is clear and strictly non-neoclassical.  
 
The two data sets turn out to look very similar. In both cases, the wage shares are roughly stable, so that the 
appropriate  neoclassical production function to test is the Cobb-Douglas. In both cases, the standard fitted functions 
do not work well in the sense outlined by Douglas and Solow. This, as we shall see, is a common outcome in actual 
data. Nonetheless, in both cases one can always create 'appropriate' modifications which will appear to make a 
neoclassical aggregate production function appear to work well in the standard sense. This is because output, capital, 
and labor are themselves ineluctably linked to wage and profit rates through an accounting identity, and this identity 
can always be manipulated to make a neoclassical production function 'come out right' (Phelps-Brown 1957, Simon 
and Levy 1963, Shaikh 1974, 1980, 1987; McCombie 2000-2001; Felipe and Holz 1999, Felipe and Adams 2001).  
As we shall see, this is true even for data whose true generating function is entirely non-neoclassical. 
 
The next section will introduce the fundamental issue: the difficulty of distinguishing between a neoclassical 
aggregate production function, which may or may not exist even in proximate form, and an accounting identity 
which always exists and is always exactly true. Since the issues raised there will require empirical investigation, 
Section III will introduce two data sets, one from the US National Income and Product Accounts (NIPA), and the 
other from a simulation run of a Goodwin-type model. Section IV will then (econometrically) interrogate both sets 
of data, to see what they appear to tell us. Section V will show that it is always possible to transform a fitted 
production function that does not work well into one that appears to do so, even when such a procedure entirely 
misrepresents the true forms of production and technical change. Section VI will take up the implications of these 
results for the standard neoclassical measures of technical change, and will develop an alternate Samuelson-Sraffa 
measure of technical change which does not require the existence any sort of aggregate production function, be it 
actual or 'surrogate'.   
 
 
II. The significance of the accounting identity 
 
If we define Yt, Lt , Kt, and wt as real output, labor, capital, and the real wage respectively, then as a matter of 

definition the observed profit rate rt = profits/capital = (Yt - wtΑ Lt)/Kt .  This means that the variables in question 
are linked through an accounting identity that is linear in Y, K, L, that always 'adds up', and that is always true.  
 
 

1)  Yt = wtΑ Lt  + rtΑ Kt 
 
 
On the other hand, if we now also posit some general production relation of the form 
 
2) Yt = F(Lt , Kt ) 
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then we know that it can represent many different underlying conditions. It can take the form a fixed-coefficient 
technology corresponding a single technique that dominates all others in wage-profit (factor-price) space, as is  
implicit in Harrod, Goodwin, and many others (Shaikh 1987). It can take the form of jumpy input-output relations 
representing a wage-profit frontier with kinks at switch points from one technique to another (Michl 1999, p.196, 
Figure 1). Or it can take the form of a set of smoothly varying coefficients, either because the wage-profit frontier 
corresponds to an infinite spectrum of fixed coefficient methods of production (Garegani 1970) or because it 
represents the aggregation of micro-level production functions (Fisher 1971a, 1987, 1993).  In none of these cases is 
the functional form Y = f (K, L) necessarily 'well-behaved' in the traditional neoclassical sense. On the contrary, 
even when the coefficients are smoothly varying, one can get aggregate relations which appear to be horrendously 
ill-behaved (Garegnani 1970, p. 430, Figure 7).  As Fisher (op. cit.) has repeatedly emphasized, it does not even help 
to begin by assuming well-behaved microeconomic production functions, because the conditions needed to produce 
a satisfactory aggregate relation are impossibly stringent.  It has therefore become widely accepted at a theoretical 
level that any aggregate production relation need not be smooth, that aggregate marginal productivity conditions will 
not generally hold, and that even if they do appear to do so, the causation cannot got from the quantity of factors to 
their corresponding prices (Samuelson 1966; Harcourt 1969, 1972, 1994). 
 
But suppose that we press ahead, as is so often done, and simply posit the existence of an (approximate) aggregate 
production function in which factor prices equal corresponding marginal products, and in which constant returns to 
scale obtain (so as to ensure that that the factor-price-weighted sum of inputs 'adds up' to total output). These 
additional assumptions then superimpose on equation 2 the further conditions  
 

3) ∂Yt/∂Lt  ≡ MPL t = wt 

4) ∂Yt/∂Kt  ≡ MPK t = rt 

5) Yt = MPL t ΑLt  + MPKt Α Kt                       [from the assumption of constant returns to scale] 
 
Equations 2-5 embody the standard neoclassical assumptions about aggregate production. Taken together, they 
immediately imply that  
 

6) Yt = wtΑ Lt  + rtΑ Kt 
 
The trouble is that this relation already holds in the form of the accounting identity (equation 1), quite independently 
of any specification of production or distribution relations. It follows that the imposition of the standard neoclassical 
assumptions about aggregate production make it impossible to distinguish the neoclassical argument from a mere 

tautology.  Since the accounting identity is always true, the only function of these assumptions is merely to interpret 
the identity. They cannot provide any support whatsoever for the theory itself.  
 
In his response to Shaikh (1974) concerning to his celebrated growth accounting procedure Solow makes just this 
point.  
 

The factor-share device of my 1957 article is in no sense a test of aggregate production functions or 
marginal productivity theory or anything of else. It merely shows how one goes about interpreting given 
time series if one starts by assuming that they were generated from a production function and that 
competitive marginal-product relations apply (Solow 1974, p. 121). 
 

But to stop there would reduce the most fundamental construct of neoclassical macroeconomics to a mere article of 
faith (Ferguson 1971). Therefore, Solow goes on to specify what is actually needed to test the standard neoclassical 
hypotheses. 
 

When someone claims that aggregate production functions work, he means a) that they give a good fit to 
input-output data without the intervention of data deriving from factor shares  b) that the function so fitted 
has partial derivatives that closely mimic observed factor prices…  [and c) since] technical change is 
always represented by a smooth function of time (or something else) … part of the test is whether the 
residuals are well-behaved (Solow, 1974, p. 121 and footnote 1). 
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So this is the task. To see if aggregate production functions do indeed work in this sense, and to learn what is 
implied if they do. But first, we need to address the issue of the data.  
 
 
III. Two aggregate data sets: actual and simulated 
 
Solow tells us that aggregate production functions 'work' when they fit the data well, when their coefficients yield 
marginal products which mimic factor shares, and when the implied pattern of technical change appears plausible. 
These are certainly necessary conditions, and we will assess their viability in the next section. But it is important to 
note that they are not sufficient conditions, because it is possible that the existence of the accounting identity might 
account for these very outcomes. After all, it was precisely because the standard neoclassical assumptions are 
functionally indistinguishable from the tautologically-true identity that Solow's conditions are necessary. What we 
also need to know, therefore, is whether they are also sufficient to distinguish between neoclassical and non-
neoclassical production relations. In other words, we need a control group against which to apply our tests.  
 
The first data set used in this paper is actual data derived directly from U.S. Bureau of Economic Analysis (BEA) 
National Income and Product Accounts (NIPA) and from corresponding wealth stocks. Details are provided in 
Appendix A. It consists of aggregate output Y = real GDP, employment L = full time equivalent employees, capital 
stock K = real private net stock at the beginning of year, and w = the real (product) wage per worker = employee 
compensation per unit employee deflated by the GDP price-deflator. In keeping with the accounting identity, the 

rate of profit r = (Y - wΑL)/K.  In addition, we can also define productivity y = Y/L, the capital-labor ratio k = K/L, 

the wage share u = w/y = wΑL/Y, and the employment ratio v = employment/labor force = 1 – the unemployment 
rate expressed in decimals.  
 
The control data set is generated from a simulation run of  a slightly modified version of the Goodwin model. The 
original Goodwin model is, as Solow (1990, pp. 35-36) justly observes, a "beautiful paper" which "does its business 
clearly and forcefully". Its essential dynamics turn on the interactions between the wage share, the rate of growth, 
and the employment ratio. Two changes are made here; the model is extended by allowing for a savings rate less 
than one (Goodwin originally assumed that all profits are saved); and Goodwin's original real wage Phillips curve is 
modified by allowing for an "employer resistance" drag on real wage growth as the wage share rises (the rate of 
profit falls). This latter modification is made in order to produce a version of the model which is stable in the 
presence of stochastic shocks1.  
 

There are two parts to the logic of the Goodwin model. The first has to do with the nature of the technology and its 
change over time. Like Harrod, Goodwin assumes that the economy is moving along its warranted path, so that 
output is equal to capacity. At any moment of time, a single linear fixed-coefficients technology dominates the wage 
rate-profit rate (factor-price) frontier, whose intercepts can be characterized by the productivity of labor and by the 
capacity-capital ratio. Over time, it is assumed that technical change is embodied in new technologies with higher 
capital-labor ratios that yield higher labor productivities, with both rising at the same rate so that the capacity-capital 
ratio remains unchanged (this is Harrod Neutral technical change). The assumption that coefficients are fixed at any 
moment of time means that marginal products cannot even be defined for any given technology. And the assumption 
of Harrod-Neutral technical change means that the choice of technique is invariant to the distribution of income, so 
that an incremental change in (say) the wage rate cannot even be associated with some corresponding change in 
labor productivity or in the capital-labor ratio. This excludes not only smooth "surrogate" correlations between real 
wages and the incremental productivity of labor (Samuelson 1962, 1966) but also any lumpy ones as well (Michl 
1999, pp. 196). The assumed technological structure thus excludes both actual and surrogate marginal productivity 

                                                           
1 In Goodwin's original formulation, the rate of change of real wages take the form of a real wage Phillips curve, and 
the resulting model is a quasi-stable center in continuous form and unstable in discrete form. Adding the negative 
influence of a high wage share to account for increased employer resistance to real wage increases as the wage share 
itself rises (and the profit rate correspondingly falls). I thank Duncan Foley for suggesting this modification.  
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conditions. It follows that the technological structure of this control group model is entirely non-neoclassical. 
Figure 1 illustrates this aspect of the model, as taken from Shaikh (1987)2.  

 
 
 

The second part of the model has to do with the dynamical interaction between the wage share and the employment 
ratio. The movements of the wage share u = w/y are influenced by two factors: the rate of growth of labor 

productivity which is taken to be some constant (α); and the rate of growth of real wages which depends positively 
on the rate of employment (v) as in the original model and here also negatively on the (squared) level of the wage 

share. The movements of the employment ratio v = L/N= Y/yΑN in turn depend on three factors: the rate of growth 

of the labor force N which is taken to be equal to some constant (β); on the rate of growth of labor productivity 

(previously specified as some constant α) ; and the rate of growth of real output (Y).  The employment ratio and the 
wage rate are then linked by the fact that the wage share influences the profit rate, which influences the rate of 
growth of capital and hence the growth rate of real output3.  Since the model has is stable, in the absence of shocks it 

the growth rate of output converges to the natural growth rate (α+β), the wage share converges to some constant 
level u* , and the employment share to some constant level v*.  
 

                                                           
2 In Figure 1, the vertical axis represents the real wage, and the horizontal axis the profit rate. Each technology is 
characterized by a linear trade-off between the wage rate and the profit rate, with limits arising from the given 
productivity of labor (y) which is also the maximum real wage, and a given capacity-capital ratio (R) which is also 
the maximum rate of profit. The slope of each such line is the capital-labor ratio corresponding to that particular 
technology. The productivity of labor rises over time, but the capacity-capital ratio is constant. Thus at any given 
real wage w, the latest technology is dominant. Changing the real wage from w to w', for instance, will not change 
the technology affect the chosen technology and hence will not affect labor productivity or the capital-labor ratio. 
3 Beginning from the short run equilibrium condition that investment equals savings (I = S), and assuming that 

savings are proportional to profits (P) because workers do not save, we have I = sΑP. Dividing by the capital stock 

yields I/K ≡ K'/K = P/K ≡ r , where K'/K stands for the rate of growth of capital. But the profit rate r = P/K = 

(P/Y)Α(Y/K) can be further decomposed by noting that the profit share P/Y = (Y - wΑL)/Y = 1- w/y = 1 – u, where 
y = Y/L = labor productivity, and u = w/y = the wage share.  Along the warranted path, output = capacity, and in the 
presence of Harrod Neutral technical change, the capacity-capital ratio R = Y/K = constant. Thus the rate of growth 

of output (Y'/Y) = the rate of growth of capacity = the rate of growth of capital (K'/K) = sΑ r = sΑ r = sΑRΑ(1-u). 

k0 

y2 

y1 

y0 

w' 

w 

w 

R 
r 

Figure 1: Fixed-Coefficient Technology with Harrod Neutral Technical Change 
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We can then summarize this modified Goodwin model by the following non-linear system of equations. Further 
details are provided in Appendix B.   
 
 
7) u = w/y            [u = wage share = real wage/labor productivity] 

8) v = Y/yΑN          [v = employment ratio = real output/(labor productivityΑlabor 
force] 

9) ln(yt ) = ln(yt -1 ) + α        [constant rate of growth of labor productivity] 

10) ln(Nt) = ln(N t –1 ) + β        [constant rate of growth of the labor force] 

11) ln(wt ) = ln(wt -1 ) - γ  + ρΑ vt -1  - ρ1Α (u t –1 )
2   [real wage growth function] 

12) ln(Yt ) = ln(Yt -1 ) +  sΑRΑ(1-u t -1  )    [output growth rate = savings rate Α profit rate] 
 

 
In the end, we have two data sets, both of which satisfy the accounting identity of equation 1. In what follows, they 
are labeled sets A and B without any further identification until the end of Appendix B. In the meantime, the reader 
is invited to keep an open mind.  
 

Figure 1 displays paths of output (Q) and capital (K). Figure 2 depicts real wages (w) and productivity (y), the latter 
implicitly a display of the path of  employment.  Figure 3 the profit rate (r). And Figure 4 plots the wage share (u) 
and the employment ratio (v). 
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IV. Do aggregate production functions 'work' at an empirical level? 
 

As we can see from Figure 4, the wage shares in data sets A and B are roughly stable, with means of u a  ≈ 0.84 and 

u b ≈  0.81, respectively. This means that a Cobb-Douglas function is an appropriate starting point. For our purposes, 

it is sufficient to work with the standard form in which technical change is assumed to be neutral (Yt = AtΑLt
bΑKt

c ).  
In general, coefficients b and c represent the putative factor shares, and their sum represents the degree of returns to 
scale. However, if we wish to impose the further restriction of constant returns to scale (b + c = 1), then we can 

divide through by labor to get the per employee form (yt = AtΑkt
c ), in which the coefficient c represents the profit 

share implied by the marginal productivity theory of distribution.  
 
For the purpose of empirical estimation, we express both of the preceding forms in levels and also in growth rates. 
As is standard, the technical change parameter is expressed as a log-linear function of time (although we will return 
to this issue in the next section). This gives us four regressions overall, and two data sets for each. The relation 
between the estimated coefficients and the observed wage and capital shares will be of particular interest. All 
regressions are OLS, as is customary in this literature. 
 

13) ln(Yt) =  a0 + a1Αt + bΑln(Lt ) + cΑ ln(Kt ) 

14) ∆ln(Yt) =  a1 + bΑ∆ln(Lt ) + cΑ ∆ln(Kt ) 

15) ln(yt) =  a0 + a1Αt + cΑln(kt )  

16) ∆ln(yt) =  a1 + cΑ∆ln(kt ) 
 
The results are reported in Table 1. Each equation is run on both sets of data. The relevant dependent variable is 
listed at the top (e.g. ln(Yt) for equation 13), estimated coefficients with t-statistics in parentheses are listed in the 
row of the appropriate dependent variable, and adjusted R2 and Durban-Watson statistics are listed after these. The 
last three rows compare the implied wage and profit shares with the actual ones (the latter being listed in parentheses 
below). 
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Table 1: Cobb-Douglas production functions fitted to actual and simulated aggregate data (OLS) 
 

Dependent Variable ln(Yt) ∆∆∆∆ln(Yt) ln(yt) ∆∆∆∆ln(yt) 

 Data A Data B Data A Data B Data A Data B Data A Data B 

Constant -4.656* 
(-2.787) 

-0.279 
(-0.147) 

0.108* 
(4.266) 

0.026* 
(3.267) 

-3.442* 
(-9.768) 

-2.109* 
(-4.561) 

0.0205* 
(6.871) 

0.015* 
(6.340) 

Time 0.0132 
(1.520) 

0.0133* 
(2.798) 

  0.020* 
(9.705) 

0.009* 
(4.488) 

  

ln(Lt) 0.988* 
(9.7445) 

0.471* 
(2.465) 

      

ln(Kt) 0.176 
(0.765) 

0.341* 
(2.354) 

      

∆ln(Lt)   1.002* 
(10.631) 

0.948* 
(9.648) 

    

∆ln(Kt)   -2.212* 
(-3.483) 

-0.271 
(-1.062) 

    

ln(kt)     0.022 
(0.219) 

0.395* 
(2.929) 

  

∆ln(kt)       -.0029 
(-0.280) 

0.063 
(0.636) 

Adj. R2 0.999 0.995 0.696 0.673 0.999 0.977 -0.018 -0.012 

D.W. 2.117 0.219 2.377 1.941 2.036 0.185 2.974 1.930 

Implied Wage Share  
(Actual Wage Share) 

0.988 
(0.840) 

0.471 
(0.810) 

1.002 
(0.840) 

0.948 
(0.810) 

0.978 
(0.840) 

0.605 
(0.810) 

1.0029 
(0.840) 

0.937 
(0.810) 

Implied Profit Share 
(Actual Profit Share) 

0.176 
(0.160) 

0.341 
(0.190) 

-2.212 
(0.160) 

-0.271 
(0.190) 

0.022 
(0.160) 

0.395 
(0.190) 

-.0029 
(0.160) 

0.063 
(0.190) 

Implied Returns to Scale 1.164 0.812 -1.210 0.677 - - - - 

t-statistics are listed below estimated coefficients, except for implied wage and profit shares where actual shares are listed below. 
Starred coefficients imply significance at 5% or better.  
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The first two forms of regressions do not assume constant returns to scale, so the sum of the labor and capital 
coefficients are not restricted in advance. When run in levels, the overall fit is excellent, and the labor coefficient is 
significant and large for both data sets. In set A the time trend and capital coefficients are not significant but the 
overall D.W. statistic is quite good (2.117), while in set B the time trend and capital coefficients are significant but 
the D.W. is not good (0.219). But in neither set are the implied shares close to the actual, or returns to scale close to 
constant.  When run in rates of growth, the overall fits is quite good for both sets of data, the time trends are 
significant, labor coefficients close to one and highly significant, and D.W.'s are good.  But in both cases the capital 
coefficient is negative, so that the implied shares are very different from actual ones.  
 
The second two forms restrict the coefficients to sum to one (i.e. they assume constant returns to scale), so the 
relevant variables are per employee output and capital. When run in levels, the overall fit is once again excellent, 
and the constants and time trend are highly significant. But in set A the coefficient of the capital-labor ratio is small 
and not statistically significant, while the overall D.W. is quite good; while in set B, the coefficient of the capital-
labor ratio is relatively large but the D.W. quite low. Once again, however, the estimated capital coefficient is not 
even close to the actual profit share in either set.  And finally, when run in growth rates, only the constant are 
significant (which in growth rate form implies significant positive rates of neutral technical change), while all other 
results are generally quite bad. 
 
On the whole, therefore, even though the wage shares are roughly stationary in both data sets, none of the fitted 
forms of the Cobb-Douglas aggregate production function 'work well'. Keeping in mind that one of the sets 
represents actual U.S. data, what are we to make of these results?  Are these results somehow atypical? 
 
Douglas certainly seems to make such a claim he says that "a considerable body of independent work tends to 
corroborate the original Cobb-Douglas formula" (Douglas 1976, p. 914, op. cit.). But Samuelson (1979, p. 924) 
points out that Douglas' own original regression did not include any term for technical change, and Felipe and 

Adams (2001, p. 6) show that when a term for neutral technical change is incorporated into the Cobb-Douglas ( < la 
Solow), then Douglas's original data set yields a "coefficient of the index of capital which is negative and 
insignificant". 
 
Solow too initially emphasized the importance of the overlap between Douglas's estimated parameters and actual 
factor shares (Fisher 1971, in McCombie 2000-2001, p. 269). And he repeated this sentiment in his first response to 
Shaikh (1974). Having found that Shaikh's constructed data yields a "point estimate of log k [which] is negative" 
and not statistically significant,  he says that if  "this were the typical outcome with real data, we would not now be 
having this discussion" (Solow 1974, p. 121). However, McCombie comments that "it is surprising that Solow did 
not seek to [similarly] 'test' the Cobb-Douglas function using his own data".  When McCombie returns to Solow's 
original data, he finds that when the Cobb-Douglas is run in levels "the coefficient of capital term is not statistically 
significant from zero", and when it is run in ratios "the coefficient of the capital-labor term is negative, but not 
statistically insignificant". This prompts him to remark that we "can only speculate whether Solow's (1957) paper 
would have had such a dramatic impact if these regressions had also been reported" (McCombie 2000-2001, p. 281-
283). 
 
None of this should be surprising. In point of fact, it has been shown that estimated aggregate production functions 
generally do not 'work well' (Sylos-Labini 1995). Moreover, negative capital coefficients are a fairly common 
finding (Felipe and Adams, 1999, p.6; Reati 2001, pp. 324-324). Nonetheless, aggregate production functions do 
appear to work on occasion. So  at least in these particular instances, can we say that this provides some evidence on 
the underlying production structure, and perhaps on the viability of the marginal productivity theory of distribution? 
This is the issue to which we turn next. 
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V. How to make aggregate production functions always work (even when they are completely inappropriate) 
 
The purpose of this section is to show that one can always turn a dysfunctional estimated aggregate production 
function into a perfectly functional one. To see this, let us return to the constant returns to scale functions of 
equations 15-16, whose fitted results appear in the last two columns of Table 1. Both of these embody the 
assumption of a log-linear time trend for the technical change variable At . Of these two regression forms, the 
growth form performs particularly poorly.  
 
But suppose that we instead consider a log-nonlinear time path for the technical change variable, as illustrated in 

Figure 6 (At ) and Figure 7 (∆ln (At )). Note that both trends in Figure 6 are fairly smooth, and should therefore 
qualify as 'well behaved' in the traditional sense (Solow, 1974, p. 121 and footnote 1). The rule by which these path 
can be derived will be developed shortly. For now, we will focus on their properties.   
 
 

 
 
Table 2 presents the results of re-estimating equations 15-16, which represent the level and growth forms of the 
constant returns to scale Cobb-Douglas production function with neutral technical change. The only difference 
between the current estimates and the previous ones is that we have broadened the assumed functional form of the 
technical change parameter At from a log-linear time trend to the log-nonlinear time trend depicted in Figure 6. 
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Table 2: Constant returns Cobb-Douglas functions with variable time trends for technical change (OLS) 
 

Dependent Variable ln(yt) ∆∆∆∆ln(yt) 

 Data A Data B Data A Data B 

Constant -2.932* 
(-245.72) 

-2.825* 
(-550.96) 

-0.000158* 
(-2.093) 

.0000638* 
(1.198) 

ln(At) 1.021* 
(244.31) 

1.007* 
(544.43) 

  

ln(kt) 0.156* 
(45.321) 

0.201* 
(137.045) 

  

∆ln(At)   1.027* 
(392.366) 

1.012* 
(421.009) 

∆ln(kt)   0.158* 
(81.209) 

0.193* 
(114.295) 

Adj. R2 0.9999 0.9999 0.9997 0.9997 

D.W. 0.311 0.286 1.834 1.515 

Implied Wage Share  
(Actual Wage Share) 

0.844 
(0.840) 

0.799 
(0.810) 

0.842 
(0.840) 

0.807 
(0.810) 

Implied Profit Share 

(Actual Profit Share) 

0.156 

(0.160) 

0.201 

(0.190) 

0.158 

(0.160) 

0.193 

(0.190) 

 
 
In Table 2, for regressions in both levels and growth rates, the fits are fantastic, neutral technical change is strongly 
supported, and the estimated capital coefficients are equal to the observed capital shares (1-u). Aggregate  
production functions and marginal productivity theory thus appear to have a strong empirical basis. And all of this 
by merely allowing the technical change parameter to take a log-nonlinear time path.  
 
The results depicted in Table 2 are essentially perfect, for both data sets. And therein lies the rub, for we already 
know that one of the data sets is generated from an entirely non-neoclassical (Goodwin) model with fixed-
coefficient technology undergoing Harrod-Neutral technical change. Even the stability of the long run wage share 
derives from the classical feedback between persistent unemployment and its effects on real wages and the rate of 
growth. Neither actual nor surrogate marginal products, nor any theory of wages linked to them, can be defined 
within this framework. Nonetheless, aggregate production functions and marginal productivity theory appear to 
work perfectly even here. How is this possible?  

The secret lies in the accounting identity of equation 1, expressed below in per employee form (equation 17). Taking 
the rates of growth of both sides gives us the growth form of this accounting identity (equation 18), where as before 
y = the productivity of labor, w = the real wage, u = w/y = the wage share, and r = the profit rate.  

17) yt = wt  + rtΑ kt   

18) ∆ln(yt) =  ∆ln(At ) + (1-ut)Α∆ln(kt ) 

in which ∆ln(At ) ≡ utΑ∆ln(wt) + (1-ut)Α∆ln(rt ) ≡ the share weighted average of the rates of change of real wages 
and the profit rate, respectively, is nothing but the famous Solow residual (Shaikh 1974). Note that in the growth 
rate form of the accounting identity the wage share ut appears as a time variable. But if, as in the present data sets, 

the wage share is stable over the long run (ut ≈ u*), equation 18 is transformed from an exact identity to an identity-

approximation' whose power depends precisely on the stability of the wage share. In that latter case, we get 

19) ∆ln(yt) ≈  ∆ln(At ) + (1-u*)Α∆ln(kt ) 

20) ln(yt) ≈  a0  + ln(At) + (1-u*)Αln(kt ) 
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It should now be obvious that there is a strong correspondence between the 'identity-approximations', and the growth 
and level forms of a constant returns to scale Cobb-Douglas with neutral technical change (equations 16 and 15 
respectively). The sole difference between the two sets had to do with the standard simplifying assumption that 

technical change can be well approximated by a log-linear time path, i.e. that ln(At) ≈  a0 + a1Αt and hence ∆ln(At ) 

≈ a1.  It is precisely this simplifying assumption that produced such bad results in the earlier regressions in Table 1. 
And it is precisely its replacement by the actual time path of At which renders the very same regression forms 
perfect, as shown in Table 2. But this is an accounting perfection, not a technological one. As we have seen, it tells 

us nothing about the underlying technology (Shaikh 1974, 1980, 1987; McCombie and Dixon 1991, pp. 27-29; 
McCombie 2000-2001, pp. 284-288; Felipe and Adams, 20001, pp. 15-20).  

Once the preceding point has been absorbed, it then becomes clear that one can always make an aggregate 
production function 'work well' by deriving a good approximation to the time path At. In data sets for which this can 
be accomplished through some simple curvilinear function of time, the resulting aggregate production function will 
appear to spontaneously fit well. But if not, better approximations can always be found. Alternately, the measures of 
the inputs (L, K) can be adjusted in a variety of ways , such as by adjusting for "for the intensity of their use over the 
business cycle" (McCombie 2000-2001, pp. 285-288). Such adjustments will change the measures of the share-
weighted growth rates of the real wage and the profit rate (the Solow Residual), and this will in turn improve the 
workings of aggregate production functions  in so far as the resulting path of the altered measures of At  is 
simplified. 

We know, of course, that the time path of At can be approximated to any desired degree of precision by means of a 
Fourier series. What constitutes a 'good' approximation is then determined by how well it performs in making the 
aggregate production function appear to 'work' – even when it is entirely inappropriate (Shaikh 1980, Felipe and 

Adams 2001, pp. 16-17). Table 3 reports the results of using an approximation ∆ln(At') for the more difficult growth 
form of the constant returns to scale Cobb-Douglas. Details of the approximations are provided in Appendix B. It is 
evident that both work quite well.  

 

Dependent Variable ∆∆∆∆ln(yt) 

 Data A Data B 

Constant not significant not significant 

∆ln(At') 
(std. error) 
(t-statistic) 

1.0144* 
(0.0481) 
(21.111) 

1.0223* 
(0.1062) 
(9.6287) 

∆ln(kt) 0.143* 
(0.0366) 
(3.903) 

0.161* 
(0.0698) 
(2.300) 

Adj. R2 0.801 0.360 

D.W. 1.234 1.672 

Implied Wage Share  
(Actual Wage Share) 

0.857 
(0.840) 

0.839 
(0.810) 

Implied Profit Share 

(Actual Profit Share) 

0.143 

(0.160) 

0.161 

(0.190) 
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Finally, we note that we have focused so far on the Cobb-Douglas function because it happens to be the appropriate 
one for the two data sets under consideration. But McCombie and Dixon (1991, p. 31-34) have shown that the 
argument can be generalized to other aggregate production functions as well. As we can see from the identity in 
equation 18, if the wage share happens to be changing over time, "then a more flexible functional form is needed 
such as the CES or translog function" (ibid, p. 32) to capture this effect also. But once again, it is merely a matter of 
approximating the identity by approximating its two central components, the Solow residual and the wage share. 
This will appear to extend the domain of aggregate production functions and marginal productivity theory. But in 
fact it will merely extend the body domain of effective 'identity-approximation'.  
 
 
 
VI. Assessing technical change 
 
 
A central implication of the foregoing results is that one cannot generally interpret the famous Solow Residual  

∆ln(At ) as a measure of the rate of technical change. To see this, it is worth noting that this measure can be 
expressed into two equivalent ways, both of which follow purely from accounting identities. In the derivation of 
equation 18, we saw that the Solow Residual (SR) is simply  the share-weighted average of the growth rates of the 
real wage and profit rate. 
 

20) SR ≡ ∆ln(At ) ≡ utΑ∆ln(wt) + (1-ut)Α∆ln(rt ) = ∆ln(yt ) -  (1-ut)Α∆ln(kt ) 
 

But using the definition of the output-capital ratio R ≡ Y/K = y/k, we can reorder the last expression for SR to get  
 

21) SR ≡ utΑ∆ln(yt ) + (1-ut)Α∆ln(Rt ) 
 
Thus, purely as a matter of accounting, the Solow Residual is also the share-weighted average of the growth rates of 
the productivity of labor and the output-capital ratio.  
 
Neoclassical economics attempts to go beyond these accounting identities by taking two further steps.  First, it 
attempts to interpret the aggregate output-capital ratio (R) as the 'aggregate productivity of capital'. For this 
interpretation to be valid, it is necessary that there exist a well-behaved neoclassical aggregate production function 
which would allow one to attribute some portion of the change in aggregate real output to the 'contribution' of real 
aggregate capital. And second, it attempts to reduce the real wage and the profit rate, and hence the corresponding 
'factor' share, to physical attributes of this same technology. Only if both of these conditions hold can the two 
accounting expressions for the Solow Residual be interpreted as (equivalent) measures of technological change. This 
is precisely what Solow does assume in his original growth accounting procedure (Solow 1957).  
 
But we have seen such assumptions are neither derived from micro-foundations (Harcourt 1972, Fisher 1993)4 nor 
supported by empirical evidence.  
 
The essential difficulty faced by the aggregate production function approach arises from its attempt to 'physicalize' 
the distribution of income. There is, however, another way to proceed, which is to think of technical change in terms 
of its effects on the competitiveness of individual firms. This is a micro-foundation common to Sraffa (1963), 
Samuelson (1962), and Okishio (1961),  and it gives rise to the notion of a wage-profit frontier. Any given collection 
of particular methods of production, one for each sector, can be called an aggregate production technique. At any 
given moment of time there may be many possible techniques available. Of these, any given real wage the one 

                                                           
4 Indeed, as Garegnani (1970, Figure 7, p. 430) showed long ago, the changes in the aggregate output-capital ratio as 
one moves along a wage-profit frontier would inevitably involve relative price effects whose influence would be 
inseparable from changes in quantities. They could, moreover, produce complex and distinctly 'ill-behaved' 
associations between output per worker and output per unit capital.  The problem lies not in measuring (the value of) 
capital, but rather in reducing it to some quantity index which must also satisfy neoclassical postulates at an 
aggregate level. 
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which will be put into operation through competitive processes will be the one which yields a higher expected rate 
of return. In terms of Figure 1 of section III, if techniques 0 and 1 happened to coincide at some moment, then at the 
particular wage rate w the dominant one would be technique 1. It at some later moment a new technique (2) became 
possible, then it would assume the dominant role. Of course Figure 1 was confined to the illustration to the particular 
instance of Harrod-Neutral technical change, in which case one single technique would be dominant at any time. But 
the principle is more general than this, and can be applied to any range of techniques coexisting at a moment of time 
and varying over time (Michl, 1999, pp. 193-198).   
 
According to this particular 'choice of technique' principle, it is the change in the aggregate (normal capacity) rate of 
profit at a common real wage which is the appropriate measure of the competitive impact of technical change5. From 
the accounting identity of equation 17, which we can write in the form rt = (yt  - wt)/kt , the rate of change of the 
profit rate at a given real wage can be written as6  
 

22) τ ≡ [∆ln(rt)]∆w =0   = ∆ln(yt )Α(1/(1-ut )) - ∆ln(kt) = ∆ln(yt )Α(ut-1/(1-ut-1 ) + ∆ln(Rt) = SR/(1-ut-1 )  
 

Both the technical impact measure τ and the Solow Residual (SR) are share-weighted averages of the rates of 
change of y and R7. But in the Solow Residual the shares too are essentially technological, in keeping with marginal 
productivity theory, whereas in technical impact measure technology and distribution mutually affect each other, but 
neither is reducible to the other. There is plenty of room, in other words, for history, economics and politics.  
 
 
 

 

                                                           
5 Shaikh (1978, 1999) argues for a somewhat modified form of this choice of technique criterion.  
6 From the identity rt = (yt  - wt)/kt , holding the real wage constant, ∆rt/ r t-1 = ∆yt/ (y t-1 – wt-1) - ∆kt /k t-1 = (∆yt/ y t-1)Α 

(1/(1 -ut-1)) - ∆kt /k t-1 = (∆yt/ y t-1) )Α(ut-1/(1-ut-1 ) – (∆Rt / Rt-1 ), since R = Y/K = y/k.  
7 Dumenil and Levy (1993) have developed a stochastic version of the path generated by this notion of choice of 
technique.  
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Appendix A 
 
The actual data used in this paper is taken from the U.S. Bureau of Economics (BEA) website, from the U.S. 
National Income and Product Accounts (NIPA). It consists of output Y = real GDP in billions of 1992-$, 
employment L = full time equivalent employees in thousands, capital stock K = beginning of year real private net 
stock in billions of 1992 chained-$, and w = the real (product) wage per worker = employee compensation per full-
time equivalent employee deflated by the GDP price-deflator, in millions of 1992-$ per employee. In keeping with 

the accounting identity, the rate of profit r = (Y - wΑL)/K.  In addition, we can also define productivity y = Y/L , in 
millions of 1992-$ per employee, the capital-labor ratio k = K/L in millions of 1992 chained-$ per employee, the 

wage share u = w/y = wΑL/Y, and the employment ratio v = employment/labor force = 1 – the unemployment rate 
(expressed in decimals).  
 
 

Appendix B 
 
The modified Goodwin model used in this paper was summarized by the following non-linear system of equations 
reproduced from the text. The parameter values used to generate the data are listed below the equations, and small 
random shocks were added to the equations during the simulation run. 
 
7) u = w/y           [u = wage share = real wage/labor productivity] 

8) v = Y/yΑN          [v = employment ratio = real output/(labor productivityΑlabor 
force] 

9) ln(yt ) = ln(yt -1 ) + α       [constant rate of growth of labor productivity] 

10) ln(Nt) = ln(N t –1 ) + β       [constant rate of growth of the labor force] 

11) ln(wt ) = ln(wt -1 ) - γ  + ρΑ vt -1  - ρ1Α (u t –1 )
2   [real wage growth function] 

12) ln(Yt ) = ln(Yt -1 ) +  sΑRΑ(1-u t -1  )   [output growth rate = savings rate Α profit rate] 
 

 

α = 0.02, β = 0.02, γ = 0.10, ρ = 0.335, ρ1 = 0.28, s = 0.25, R = 1. 
 
The approximations to the Solow Residual At over the interval 1949-2000 were developed through a Fourier series 
of the form  
 

At' = a0 + 3ai Αcos(ni Αθ + bi ) 
 

where θ = a variable constructed to range between -2π and 2π over the interval 1949-2000.  
 

Data Set A Data Set A 

a0 = 0.0167   a0 = 0.0132   

a1  = 0.0040 n1  = 9 b1  = -3.6426 a1  = 0.0042 n1  = 2 b1  = 0.0077 

a2  = -0.0072 n2  = 10 b2  = -0.7974 a2  = -0.0037 n2  = 4 b2  = 0.0525 

a3  = -.0061 n3  = 11 b3  = 1.1093 a3  = 0.0069 n3  = 6 b3  = 16.843 

a4  = 0.0039 n4  = 13 b4  = -0.7849 a4  = 0.0032 n4  = 7 b4  = -15.383 

a5  = 0.0037 n5  = 14 b5  = 0 a5  = -0.0037 n5  = 8 b5  = 8.768 

a6  = 0.0073 n6  = 15 b6  = -0.5724 a6  = 0.0035 n6  = 9 b6  = -1.798 

a7  = 0.0107 n7  = 16 b7  = -0.3630    

a8  = -0.0081 n8  = 18 b8  = -0.8962    

a9  = 0.0067 n9  = 19 b9  = 1.6030    

a10  = 0.0035 n10  =  20 b10  = 0.9249    

      

Adj. R2 = 0.801, D.W. = 1.234 Adj. R2  = 0.299, D.W. = 2.002 
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Finally, the simulated data was labeled set A and the actual labeled set B. 
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