
- Order:
- Duration: 9:33
- Published: 23 Mar 2007
- Uploaded: 25 Jul 2011
- Author: tdewitt451
Depending on the definition, the term may apply only to isolated atoms, or also to atoms in condensed matter, covalently bound in molecules, or in ionized and excited states; and its value may be obtained through experimental measurements, or computed from theoretical models. Under some definitions, the value of the radius may depend on the atom's state and context.
The concept is difficult to define because the electrons do not have definite orbits, or sharply defined ranges. Rather, their positions must be described as probability distributions that taper off gradually as one moves away from the nucleus, without a sharp cutoff. Moreover, in condensed matter and molecules, the electron clouds of the atoms usually overlap to some extent, and some of the electrons may roam over a large region encompassing two or more atoms.
Despite these conceptual difficulties, under most definitions the radii of isolated neutral atoms range between 30 and 300 pm (trillionths of a meter), or between 0.3 and 3 angstroms. Therefore, the radius of an atom is more than 10,000 times the radius of its nucleus (1–10 fm), and less than 1/1000 of the wavelength of visible light (400–700 nm).
, CH3CH2OH. Each atom is modeled by a sphere with the element's Van der Waals radius.]] For many purposes, atoms can be modeled as spheres. This is only a crude approximation, but it can provide quantitative explanations and predictions for many phenomena, such as the density of liquids and solids, the diffusion of fluids through molecular sieves, the arrangement of atoms and ions in crystals, and the size and shape of molecules.
Atomic radii vary in a predictable and explicable manner across the periodic table. For instance, the radii generally decrease along each period (row) of the table, from the alkali metals to the noble gases; and increase down each group (column). The radius increases sharply between the noble gas at the end of each period and the alkali metal at the beginning of the next period. These trends of the atomic radii (and of various other chemical and physical properties of the elements) can be explained by the electron shell theory of the atom; they provided important evidence for the development and confirmation of quantum theory.
Van der Waals radius: in principle, half the minimum distance between the nuclei of two atoms of the element that are not bound to the same molecule.
Ionic radius: the nominal radius of the ions of an element in a specific ionization state, deduced from the spacing of atomic nuclei in crystalline salts that include that ion. In principle, the spacing between two adjacent oppositely charged ions (the length of the ionic bond between them) should equal the sum of their ionic radii. It is only applicable to atoms and ions with a single electron, such as hydrogen, singly ionized helium, and positronium. Although the model itself is now obsolete, the Bohr radius for the hydrogen atom is still regarded as an important physical constant.
{| wikitable WIDTH="80%" style="text-align:center" | Group (vertical) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |- align="CENTER" | Period (horizontal) | colspan=19 | |- align="CENTER" | 1 | bgcolor="#ff1900" | H25 | colspan=16 | | bgcolor="#bbbbbb" | He |- align="CENTER" | 2 | bgcolor="#ff9100" | Li145 | bgcolor="#ff6900" | Be105 | colspan=10 | | bgcolor="#ff5500" | B85 | bgcolor="#ff4600" | C70 | bgcolor="#ff4100" | N65 | bgcolor="#ff3c00" | O60 | bgcolor="#ff3200" | F50 | bgcolor="#bbbbbb" | Ne |- align="CENTER" | 3 | bgcolor="#ffb400" | Na180 | bgcolor="#ff9600" | Mg150 | colspan=10 | | bgcolor="#ff7d00" | Al125 | bgcolor="#ff6e00" | Si110 | bgcolor="#ff6400" | P100 | bgcolor="#ff6400" | S100 | bgcolor="#ff6400" | Cl100 | bgcolor="#bbbbbb" | Ar |- align="CENTER" | 4 | bgcolor="#ffdc00" | K220 | bgcolor="#ffb400" | Ca180 | bgcolor="#ffa000" | Sc160 | bgcolor="#ff8c00" | Ti140 | bgcolor="#ff8700" | V135 | bgcolor="#ff8c00" | Cr140 | bgcolor="#ff8c00" | Mn140 | bgcolor="#ff8c00" | Fe140 | bgcolor="#ff8700" | Co135 | bgcolor="#ff8700" | Ni135 | bgcolor="#ff8700" | Cu135 | bgcolor="#ff8700" | Zn135 | bgcolor="#ff8700" | Ga130 | bgcolor="#ff7d00" | Ge125 | bgcolor="#ff7300" | As115 | bgcolor="#ff7300" | Se115 | bgcolor="#ff7300" | Br115 | bgcolor="#bbbbbb" | Kr |- align="CENTER" | 5 | bgcolor="#ffeb00" | Rb235 | bgcolor="#ffc800" | Sr200 | bgcolor="#ffb400" | Y180 | bgcolor="#ff9b00" | Zr155 | bgcolor="#ff9100" | Nb145 | bgcolor="#ff9100" | Mo145 | bgcolor="#ff8700" | Tc135 | bgcolor="#ff8200" | Ru130 | bgcolor="#ff8700" | Rh135 | bgcolor="#ff8c00" | Pd140 | bgcolor="#ffa000" | Ag160 | bgcolor="#ff9b00" | Cd155 | bgcolor="#ff9b00" | In155 | bgcolor="#ff9100" | Sn145 | bgcolor="#ff9100" | Sb145 | bgcolor="#ff8c00" | Te140 | bgcolor="#ff8c00" | I140 | bgcolor="#bbbbbb" | Xe |- align="CENTER" | 6 | bgcolor="#ffff00" | Cs260 | bgcolor="#ffd700" | Ba215 | * | bgcolor="#ff9b00" | Hf155 | bgcolor="#ff9100" | Ta145 | bgcolor="#ff8700" | W135 | bgcolor="#ff8700" | Re135 | bgcolor="#ff8200" | Os130 | bgcolor="#ff8700" | Ir135 | bgcolor="#ff8700" | Pt135 | bgcolor="#ff8700" | Au135 | bgcolor="#ff9600" | Hg150 | bgcolor="#ffbe00" | Tl190 | bgcolor="#ffb400" | Pb180 | bgcolor="#ffa000" | Bi160 | bgcolor="#ffbe00" | Po190 | bgcolor="#bbbbbb" | At | bgcolor="#bbbbbb" | Rn |- align=CENTER | 7 | bgcolor="#bbbbbb" | Fr | bgcolor="#ffd700" | Ra215 | ** | bgcolor="#bbbbbb" | Rf | bgcolor="#bbbbbb" | Db | bgcolor="#bbbbbb" | Sg | bgcolor="#bbbbbb" | Bh | bgcolor="#bbbbbb" | Hs | bgcolor="#bbbbbb" | Mt | bgcolor="#bbbbbb" | Ds | bgcolor="#bbbbbb" | Rg | bgcolor="#bbbbbb" | Cn | bgcolor="#bbbbbb" | Uut | bgcolor="#bbbbbb" | Uuq | bgcolor="#bbbbbb" | Uup | bgcolor="#bbbbbb" | Uuh | bgcolor="#bbbbbb" | Uus | bgcolor="#bbbbbb" | Uuo |- align=CENTER | |- align=CENTER | Lanthanides | * | bgcolor="#ffc300" | La195 | bgcolor="#ffb900" | Ce185 | bgcolor="#ffb900" | Pr185 | bgcolor="#ffb900" | Nd185 | bgcolor="#ffb900" | Pm185 | bgcolor="#ffb900" | Sm185 | bgcolor="#ffb900" | Eu185 | bgcolor="#ffb400" | Gd180 | bgcolor="#ffaf00" | Tb175 | bgcolor="#ffaf00" | Dy175 | bgcolor="#ffaf00" | Ho175 | bgcolor="#ffaf00" | Er175 | bgcolor="#ffaf00" | Tm175 | bgcolor="#ffaf00" | Yb175 | bgcolor="#ffaf00" | Lu175 |- align=CENTER | Actinides | ** | bgcolor="#ffc300" | Ac195 | bgcolor="#ffb400" | Th180 | bgcolor="#ffb400" | Pa180 | bgcolor="#ffaf00" | U175 | bgcolor="#ffaf00" | Np175 | bgcolor="#ffaf00" | Pu175 | bgcolor="#ffaf00" | Am175 | bgcolor="#bbbbbb" | Cm | bgcolor="#bbbbbb" | Bk | bgcolor="#bbbbbb" | Cf | bgcolor="#bbbbbb" | Es | bgcolor="#bbbbbb" | Fm | bgcolor="#bbbbbb" | Md | bgcolor="#bbbbbb" | No | bgcolor="#bbbbbb" | Lr |- align="CENTER" | colspan=20 | |}
The increasing nuclear charge is partly counterbalanced by the increasing number of electrons, a phenomenon that is known as shielding; which explains why the size of atoms usually increases down each column. However, there are two occasions where shielding is less effective: in these cases, the atoms are smaller than would otherwise be expected.
The following table summarizes the main phenomena that influence the atomic radius of an element:
Due to lanthanide contraction, the 5 following observations can be drawn:
# The size of Ln3+ ions regularly decreases with atomic number. According to Fajans' rules, decrease in size of Ln3+ ions increases the covalent character and decreases the basic character between Ln3+ and OH− ions in Ln(OH)3. Hence the order of size of Ln3+ is given: La3+ > Ce3+ > ... , ... > Lu3+. # There is a regular decrease in their ionic radii. # There is a regular decrease in their tendency to act as a reducing agent, with increase in atomic number. # The second and third rows of d-block transition elements are quite close in properties. # Consequently, these elements occur together in natural minerals and are difficult to separate.
{| wikitable WIDTH="80%" style="text-align:center" | Group (vertical) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 |- align="CENTER" | Period (horizontal) | colspan=19 | |- align="CENTER" | 1 | bgcolor="#ff3500" | H53 | colspan=16 | | bgcolor="#ff1f00" | He31 |- align="CENTER" | 2 | bgcolor="#ffa700" | Li167 | bgcolor="#ff7000" | Be112 | colspan=10 | | bgcolor="#ff5700" | B87 | bgcolor="#ff4300" | C67 | bgcolor="#ff3800" | N56 | bgcolor="#ff3000" | O48 | bgcolor="#ff2a00" | F42 | bgcolor="#ff2600" | Ne38 |- align="CENTER" | 3 | bgcolor="#ffbe00" | Na190 | bgcolor="#ff9100" | Mg145 | colspan=10 | | bgcolor="#ff7600" | Al118 | bgcolor="#ff6f00" | Si111 | bgcolor="#ff6200" | P98 | bgcolor="#ff5800" | S88 | bgcolor="#ff4f00" | Cl79 | bgcolor="#ff4700" | Ar71 |- align="CENTER" | 4 | bgcolor="#fff300" | K243 | bgcolor="#ffc200" | Ca194 | bgcolor="#ffb800" | Sc184 | bgcolor="#ffb000" | Ti176 | bgcolor="#ffab00" | V171 | bgcolor="#ffa600" | Cr166 | bgcolor="#ffa100" | Mn161 | bgcolor="#ff9c00" | Fe156 | bgcolor="#ff9800" | Co152 | bgcolor="#ff9500" | Ni149 | bgcolor="#ff9100" | Cu145 | bgcolor="#ff8e00" | Zn142 | bgcolor="#ff8800" | Ga136 | bgcolor="#ff7d00" | Ge125 | bgcolor="#ff7200" | As114 | bgcolor="#ff6700" | Se103 | bgcolor="#ff5e00" | Br94 | bgcolor="#ff5800" | Kr88 |- align="CENTER" | 5 | bgcolor="#ffff0a" | Rb265 | bgcolor="#ffdb00" | Sr219 | bgcolor="#ffd400" | Y212 | bgcolor="#ffce00" | Zr206 | bgcolor="#ffc600" | Nb198 | bgcolor="#ffbe00" | Mo190 | bgcolor="#ffb700" | Tc183 | bgcolor="#ffb600" | Ru178 | bgcolor="#ffac00" | Rh173 | bgcolor="#ffa900" | Pd169 | bgcolor="#ffa500" | Ag165 | bgcolor="#ffa100" | Cd161 | bgcolor="#ff9c00" | In156 | bgcolor="#ff9100" | Sn145 | bgcolor="#ff8500" | Sb133 | bgcolor="#ff7b00" | Te123 | bgcolor="#ff7300" | I115 | bgcolor="#ff6c00" | Xe108 |- align="CENTER" | 6 | bgcolor="#ffff2b" | Cs298 | bgcolor="#fffd00" | Ba253 | * | bgcolor="#ffd000" | Hf208 | bgcolor="#ffc800" | Ta200 | bgcolor="#ffc100" | W193 | bgcolor="#ffbc00" | Re188 | bgcolor="#ffb900" | Os185 | bgcolor="#ffb400" | Ir180 | bgcolor="#ffb100" | Pt177 | bgcolor="#ffae00" | Au174 | bgcolor="#ffab00" | Hg171 | bgcolor="#ff9c00" | Tl156 | bgcolor="#ff9a00" | Pb154 | bgcolor="#ff8f00" | Bi143 | bgcolor="#ff8700" | Po135 | bgcolor="#bbbbbb" | At | bgcolor="#ff7800" | Rn120 |- align=CENTER | 7 | bgcolor="#bbbbbb" | Fr | bgcolor="#bbbbbb" | Ra | ** | bgcolor="#bbbbbb" | Rf | bgcolor="#bbbbbb" | Db | bgcolor="#bbbbbb" | Sg | bgcolor="#bbbbbb" | Bh | bgcolor="#bbbbbb" | Hs | bgcolor="#bbbbbb" | Mt | bgcolor="#bbbbbb" | Ds | bgcolor="#bbbbbb" | Rg | bgcolor="#bbbbbb" | Cn | bgcolor="#bbbbbb" | Uut | bgcolor="#bbbbbb" | Uuq | bgcolor="#bbbbbb" | Uup | bgcolor="#bbbbbb" | Uuh | bgcolor="#bbbbbb" | Uus | bgcolor="#bbbbbb" | Uuo |- align=CENTER | |- align=CENTER | Lanthanides | * | bgcolor="#bbbbbb" | La | bgcolor="#bbbbbb" | Ce | bgcolor="#fff700" | Pr247 | bgcolor="#ffce00" | Nd206 | bgcolor="#ffcd00" | Pm205 | bgcolor="#ffee00" | Sm238 | bgcolor="#ffe700" | Eu231 | bgcolor="#ffe900" | Gd233 | bgcolor="#ffe100" | Tb225 | bgcolor="#ffe400" | Dy228 | bgcolor="#bbbbbb" | Ho | bgcolor="#ffe200" | Er226 | bgcolor="#ffde00" | Tm222 | bgcolor="#ffde00" | Yb222 | bgcolor="#ffd900" | Lu217 |- align=CENTER | Actinides | ** | bgcolor="#bbbbbb" | Ac | bgcolor="#bbbbbb" | Th | bgcolor="#bbbbbb" | Pa | bgcolor="#bbbbbb" | U | bgcolor="#bbbbbb" | Np | bgcolor="#bbbbbb" | Pu | bgcolor="#bbbbbb" | Am | bgcolor="#bbbbbb" | Cm | bgcolor="#bbbbbb" | Bk | bgcolor="#bbbbbb" | Cf | bgcolor="#bbbbbb" | Es | bgcolor="#bbbbbb" | Fm | bgcolor="#bbbbbb" | Md | bgcolor="#bbbbbb" | No | bgcolor="#bbbbbb" | Lr |- align="CENTER" | colspan=20 | |}
This text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.