
Book review

Basic Simple Type Theory, J. Roger Hindley

Hans-Joerg Tiede
Departments of Computer Science, Cognitive Science and Linguistics, Lindley
Hall, Indiana University, Bloomington, IN 47405, USA, htiede@indiana.edu

5/10/1998, To appear in the Journal of Logic, Language, and Information

Basic Simple Type Theory

J. Roger Hindley

Cambridge

1997

Cambridge Tracts in Theoretical Computer Science 42

Cambridge University Press

$39.95/$25.00 (harback)

xi + 198 pages

ISBN: 0-521-46518-4

Type theory has become an increasingly important topic in many

areas, including theoretical computer science (Barendregt, 1992), the

development of programming languages (Mitchell, 1996), logic (Girard,

[et al.], 1989) and linguistics (van Benthem, 1991). The study of type

theory was initiated by Russell's attempt to avoid paradoxes in set the-

ory and the foundations of mathematics. In its computational setting,

type theory is supposed to give us information about the behavior of

programs only with respect to their domain and range, so that if a

program has a type �! � (mapping terms of type � to terms of type

�) and we apply that program to a term of type �, we can expect to

receive a term of type � as the output. In typed �-calculi, we consider

statements of the form: x1 : �1; : : : :; xn : �n ` M : �, read \under

the assignments of types �1; : : : ; �n to the distinct variables x1; : : : ; xn,

possibly occurring free in M , M can be assigned the type �."

Among the di�erent type systems that play a role in the above men-

tioned areas, the simply typed �-calculus (�!) is of central importance.

In �! , only the formation of function types (�! �) from a collection

of primitive types (possibly including type variables) is allowed. Thus,

it does not make use of other type connectives or quanti�cation over

types. Its importance is due to the fact that type systems of program-

ming languages usually are extensions of �! and many type systems

under consideration in logic and linguistics are restrictions of �!.

2 Hans-Joerg Tiede

The book under review is only concerned with �!. This feature

distinguishes it from many other introductions to type theory (see, for

example, the following selection, which is by no means complete or

canonical: Barendregt, 1992, Mitchell, 1996, Turner, 1997) which cover

a wide range of type theories, of which there certainly are enough to

confuse the beginning student of type theory. In particular, this book

is concerned with type assignment or Curry typing: algorithms that,

given an untyped �-term, check whether a type can be assigned to that

term.

The main topics of the book are the principal type algorithm, the

relationship between type theory and logic, the converse principal type

algorithm, and an algorithm for counting the number of inhabitants of

a type. Much of this material was previously available only in unpub-

lished Ph.D. dissertations (in particular Ben-Yelles' 1979 dissertation),

making it available in published form for the �rst time. Hindley inte-

grates most of the important computational and logical features of �!
in this book, which should make it appealing to researchers in both

areas. He also includes a wealth of historical references and pointers to

current research, making this book a useful reference tool.

The �rst chapter contains a quick review of the necessary back-

ground of the untyped �-calculus. The second chapter introduces types

and a type assignment calculus for �!. The introduction of an assign-

ment calculus leads to the notion of principal types. A principal or most

general type is a type that can be assigned to a term, such that all other

types that can be assigned to that term are substitution instances of

the principal type. This can be illustrated by considering the identity

function �x:x. The type assignment system of �! can assign any type

of the form � ! � to it. Thus, for any type variable a, a ! a is a

principal type of �x:x, since for any �, � ! � can be obtained from

a ! a by the substitution [a 7! �]. It should be noted that principal

types are unique up to renaming of type variables. Hindley's princi-

pal type theorem states that every term typable in �! has a principal

type. This theorem is proved by giving an algorithm that assigns to

any term its principal type, if this term is typeable, or else terminates

with a correct statement that this term is not typable. This algorithm

makes use of uni�cation of types, and is introduced in the book after

a good introduction to uni�cation in general.

The converse principal type theorem states that any type that is

the type of some term is the principal type of some term. Its proof for

�! and other systems depends on a variant of the resolution rule of

automated theorem proving, called the rule of condensed detachment.

An important contribution of this book is a very clear exposition

of the Curry-Howard isomorphism, which describes the relationship

jolli-review.tex; 10/10/1998; 14:33; no v.; p.2

Book review 3

between �! and implicational intuitionistic logic. The chapter also

includes a discussion of this relationship for restricted classes of �-terms

and substructural logics, which are logics that result from removing

some or all of the structural rules of Gentzen's sequent calculus (weak-

ening, exchange, and contraction). The substructural logics which are

discussed in the book are relevance logic (lacking weakening), BCK

(lacking contraction), and BCI logic (lacking both weakening and con-

traction), the last of which is the implicational fragment of linear logic.

Finally, the book introduces tools for studying the inhabitants of a

type, i.e. the terms that can be assigned a given type. This chapter

includes algorithms for counting the number of inhabitants and for

deciding whether the number of inhabitants of a type is �nite or in�nite.

While the question of how many terms can be assigned a given type may

not seem important at �rst, the algorithms presented in this chapter

are very interesting for two reasons. First, using the correspondence

between logic and type theory, we can use this algorithm to answer the

question of how many di�erent normal form proofs there are for a given

formula in intuitionistic logic, including if there are only �nitely many,

in�nitely many, or none. Also, the algorithms for counting the number

of inhabitants and deciding whether this number is �nite or in�nite have

interesting similarities to pumping lemmas in formal language theory

and to algorithms deciding the �niteness of regular languages. These

algorithms relate the, suitably de�ned, depth of special inhabitants of a

type with the number of distinct type variables occurring in that type.

It can be shown that if a type has special inhabitants of a depth that

is larger than the number of distinct type variables occurring in that

type, it has inhabitants of depth greater than n, for all n, and hence

in�nitely many inhabitants.

Also included are chapters on type theory with equality and its

semantics, as well as type theory based on typed terms rather than

type assignment (the so-called \Church approach" to typing).

The book contains many exercises with solutions to some of these,

making it useful as a textbook. However, the strength of the book,

i.e. its thorough discussion of one type system rather than a massive

accumulation of di�erent type systems, makes it less appealing to use as

a textbook on its own for classes in type theory for logicians or computer

scientists. If used as an introduction to type theory for logicians, more

material on the relation between cut elimination and normalization

should be included. For computer scientists, the importance of other

type systems makes it di�cult to justify teaching a whole class only on

�!. In either case, the situation can be remedied by supplementing the

course with more advanced material, for which the book is excellent

preparation.

jolli-review.tex; 10/10/1998; 14:33; no v.; p.3

4 Hans-Joerg Tiede

While the book either includes or refers to most of the important

results about �!, I would like to point out the following omissions.

Although all of these topics are referred to in Hindley and Seldin (1986),

their inclusion in this book would have been warranted by their impor-

tance:

� A proof of strong normalization for �!. Although Hindley points

to relevant places to �nd such a proof, its inclusion would have

made the book more self contained.

� The connection with cartesian closed categories. While Hindley dis-

cusses some semantic aspects of �!, category theoretic models of

type theory, and in particular of �!, have become very important

in computer science and logic. On the other hand, good introduc-

tions to this topic are available both for logicians (Lambek & Scott,

1986) and for computer scientists (Crole, 1993). However, these

texts are not referred to in the book.

� The third omission concerns the question which number theoretic

functions are de�nable in �!. While strong normalization implies

that only total functions, and therefore not all computable func-

tions, are de�nable, Schwichtenberg's (1976) characterization of the

functions de�nable in �! as coinciding with the extended polyno-

mials should have been included or at least referred to in this book.

The reason that this result appears so important is that researchers

in programming languages would, of course, like to know how much

of the computational power of the untyped �-calculus is lost by the

restriction to typed �-calculi.

All in all, however, this book is an extremely useful introduction

to type theory for non-specialists and an equally useful reference for

researchers.

References

Barendregt, H.P., 1992, \Lambda calculi with types," in: S. Abramsky [et al.], eds.,
Handbook of Logic in Computer Science. Oxford: Clarendon Press: 117-309.

van Benthem, J., 1991, Language in Action. Amsterdam: North Holland.
Ben-Yelles, C.-B., 1979, Type-assignment in the lambda-calculus; syntax and seman-

tics. Unpublished Ph.D. Thesis. Mathematics Dept., University of Wales
Swansea.

Crole, R.L., 1993, Categories for Types. Cambridge: Cambridge University Press.
Girard, J.-Y, Y. Lafont, and P. Taylor, 1989, Proofs and Types. Cambridge: Cam-

bridge University Press.
Hindley, J.R. and J.P. Seldin, 1986, Introduction to Combinators and �-calculus.

Cambridge: Cambridge University Press.

jolli-review.tex; 10/10/1998; 14:33; no v.; p.4

Book review 5

Lambek, J. and P.J. Scott, 1986, Introduction to Higher Order Categorical Logic.
Cambridge: Cambridge University Press.

Mitchell, J. C., 1996, Foundations for Programming Languages. Cambridge, MA:
MIT Press.

Schwichtenberg, H., 1976, \De�nierbare Funktionen im �-Kalk�ul mit Typen," in:
Archiv f�ur mathematische Logik und Grundlagenforschung 17: 113-114.

Turner, R., 1997, \Types," in: J. van Benthem and A. ter Meulen, eds., Handbook
of Logic and Language. Amsterdam: Elsevier: 535-586.

jolli-review.tex; 10/10/1998; 14:33; no v.; p.5

