Evolution-Data Optimized or Evolution-Data only (EV-DO, EV, etc.) is a telecommunications standard for the wireless transmission of data through radio signals, typically for broadband Internet access. It uses multiplexing techniques including code division multiple access (CDMA) as well as time division multiple access (TDMA) to maximize both individual users' throughput and the overall system throughput. It is standardized by 3rd Generation Partnership Project 2 (3GPP2) as part of the CDMA2000 family of standards and has been adopted by many mobile phone service providers around the world – particularly those previously employing CDMA networks. It is also used on the Globalstar satellite phone network.
EV-DO was designed as an evolution of the CDMA2000 (IS-2000) standard that would support high data rates and could be deployed alongside a wireless carrier's voice services. An EV-DO channel has a bandwidth of 1.25 MHz, the same bandwidth size that IS-95A (IS-95) and IS-2000 (1xRTT) use. The channel structure, on the other hand, is very different. Additionally, the back-end network is entirely packet-based, and thus is not constrained by the restrictions typically present on a circuit switched network.
The EV-DO feature of CDMA2000 networks provides access to mobile devices with forward link air interface speeds of up to 2.4 Mbit/s with Rel. 0 and up to 3.1 Mbit/s with Rev. A. The reverse link rate for Rel. 0 can operate up to 153 kbit/s, while Rev. A can operate at up to 1.8 Mbit/s. It was designed to be operated end-to-end as an IP based network, and so it can support any application which can operate on such a network and bit rate constraints.
Later, likely due to the possible negative connotations of the word "only", the "DO" part of the standard's name 1xEV-DO was changed to stand for "Data Optimized". So EV-DO now stands for "Evolution-Data Optimized", the 1x prefix has been dropped by the many major carriers, and is marketed simply as EV-DO. This provides a more marketing-friendly emphasis that the technology was optimized for data.
The forward channel is divided into slots, each being 1.667 ms long. In addition to user traffic, overhead channels are interlaced into the stream. These include the Pilot which helps the mobile find and identify the channel, the Media Access Channel (MAC) which tells the mobiles when their data is scheduled, and the Control Channel, which contains other information that the network needs the mobiles to know.
The modulation to be used to communicate with a given mobile is determined by the mobile itself. It listens to the traffic on the channel, and depending on the receive signal strength along with the perceived multi-path and fading conditions, makes its best guess as to what data-rate it can sustain while maintaining a reasonable frame error rate of 1-2%. It then communicates this information back to the serving sector in the form of an integer between 1 and 12 on the "Digital Rate Control" (DRC) channel. Alternatively, the mobile can select a "null" rate (DRC 0), indicating that the mobile either cannot decode data at any rate, or that it is attempting to hand off to another serving sector.
The DRC values are as follows:
! DRC Index | Bit rate>Data rate (kbit/s) | ! Slots scheduled | ! Payload size (bits) | Code rate>Code Rate | ! Modulation | Signal-to-noise ratio>SNR Reqd. |
1 | 38.4 | 16 | 1024 | 1/5 | -12 | |
2 | 76.8 | 8 | 1024 | 1/5 | -9.6 | |
3 | 153.6 | 4 | 1024 | 1/5 | -6.8 | |
4 | 307.2 | 2 | 1024 | 1/5 | -3.9 | |
5 | 307.2 | 4 | 2048 | 1/5 | -3.8 | |
6 | 614.4 | 1 | 1024 | 1/3 | -0.6 | |
7 | 614.4 | 2 | 2048 | 1/3 | -0.8 | |
8 | 921.6 | 2 | 3072 | 1/3 | 1.8 | |
9 | 1228.8 | 1 | 2048 | 2/3 | 3.7 | |
10 | 1228.8 | 2 | 4096 | 1/3 | 3.8 | |
11 | 1843.2 | 1 | 3072 | 2/3 | 7.5 | |
12 | 2457.6 | 1 | 4096 | 2/3 | 9.7 |
Another important aspect of the EV-DO forward link channel is the scheduler. The scheduler most commonly used is called "proportional fair". It's designed to maximize sector throughput while also guaranteeing each user a certain minimum level of service. The idea is to schedule mobiles reporting higher DRC indices more often, with the hope that those reporting worse conditions will improve in time.
The system also incorporates Incremental Redundancy Hybrid ARQ. Each sub-packet of a multi-slot transmission is a turbo-coded replica of the original data bits. This allows mobiles to acknowledge a packet before all of its sub-sections have been transmitted. For example, if a mobile transmits a DRC index of 3 and is scheduled to receive data, it will expect to get data during four time slots. If after decoding the first slot the mobile is able to determine the entire data packet, it can send an early acknowledgement back at that time; the remaining three sub-packets will be cancelled. If however the packet is not acknowledged, the network will proceed with the transmission of the remaining parts until all have been transmitted or the packet is acknowledged.
All of the reverse link channels are combined using code division and transmitted back to the base station using QPSK where they are decoded. The maximum speed available for user data is 153.2 kbit/s, but in real-life conditions this is rarely achieved. Typical speeds achieved are between 20-50 kbit/s.
=== TIA-856 Rev. A ===
Revision A of EV-DO makes several additions to the protocol while keeping it completely backwards compatible with Release 0.
These changes included the introduction of several new forward link data rates that increase the maximum burst rate from 2.45 Mbit/s to 3.1 Mbit/s. Also included were protocols that would decrease connection establishment time (called enhanced access channel MAC), the ability for more than one mobile to share the same timeslot (multi-user packets) and the introduction of QoS flags. All of these were put in place to allow for low latency, low bit rate communications such as VoIP.
The additional forward rates for EV-DO Rev. A are:
! DRC Index | Bit rate>Data rate in kbit/s | ! Slots scheduled | ! Payload size (bits) | Code rate>Code Rate | ! Modulation |
13 | 1536 | 2 | 5120 | 5/12 | |
14 | 3072 | 1 | 5120 | 5/6 |
In addition to the changes on the forward link, the reverse link was enhanced to support higher complexity modulation (and thus higher bit rates). An optional secondary pilot was added, which is activated by the mobile when it tries to achieve enhanced data rates. To combat reverse link congestion and noise rise, the protocol calls for each mobile to be given an interference allowance which is replenished by the network when the reverse link conditions allow it. The reverse link has a maximum rate of 1.8 Mbit/s, but under normal conditions users experience a rate of approximately 500-1000kbit/s but with more latency than cable and dsl.
In November 2008, Qualcomm, UMB's lead sponsor, announced it was ending development of the technology. This followed the announcement that most CDMA carriers chose to adopt the competing 3GPP Long Term Evolution (LTE) standard.
At the time, there was much debate on the relative merits of DV and DO. Traditional operators with an existing voice network preferred DV, since it does not require a separate band. Other design engineers, and newer operators without a 1x voice network, preferred EV-DO because it did not have to be backward compatible, and so could explore different pilot structures, reverse link silence periods, improved control channels, etc. And the network cost was lower, since EV-DO uses an IP network and does not require a SS7 network and complex network switches such as a mobile switching center (MSC). Also, equipment was not available for EV-DV in time to meet market demands whereas the EV-DO equipment and mobile application-specific integrated circuits (ASIC) were available and tested by the time the EV-DV standard was completed. As a result, the EV-DV standard was less attractive to operators, and has not been implemented. Verizon Wireless, then Sprint Nextel in 2004 and smaller operators in 2005 announced their plans to deploy EV-DO. In March 2005, Qualcomm suspended development of EV-DV chipsets, and focused on improving the EV-DO product line.
Category:Code division multiple access Category:3rd Generation Partnership Project 2 standards
be-x-old:EV-DO es:EV-DO et:EVDO fr:Evolution-Data Optimized ko:EV-DO id:EV-DO it:EV-DO ja:CDMA2000 1x pt:Evolution-Data Optimized ru:EV-DO uk:Evolution-Data Optimized zh:EV-DOThis text is licensed under the Creative Commons CC-BY-SA License. This text was originally published on Wikipedia and was developed by the Wikipedia community.
The World News (WN) Network, has created this privacy statement in order to demonstrate our firm commitment to user privacy. The following discloses our information gathering and dissemination practices for wn.com, as well as e-mail newsletters.
We do not collect personally identifiable information about you, except when you provide it to us. For example, if you submit an inquiry to us or sign up for our newsletter, you may be asked to provide certain information such as your contact details (name, e-mail address, mailing address, etc.).
When you submit your personally identifiable information through wn.com, you are giving your consent to the collection, use and disclosure of your personal information as set forth in this Privacy Policy. If you would prefer that we not collect any personally identifiable information from you, please do not provide us with any such information. We will not sell or rent your personally identifiable information to third parties without your consent, except as otherwise disclosed in this Privacy Policy.
Except as otherwise disclosed in this Privacy Policy, we will use the information you provide us only for the purpose of responding to your inquiry or in connection with the service for which you provided such information. We may forward your contact information and inquiry to our affiliates and other divisions of our company that we feel can best address your inquiry or provide you with the requested service. We may also use the information you provide in aggregate form for internal business purposes, such as generating statistics and developing marketing plans. We may share or transfer such non-personally identifiable information with or to our affiliates, licensees, agents and partners.
We may retain other companies and individuals to perform functions on our behalf. Such third parties may be provided with access to personally identifiable information needed to perform their functions, but may not use such information for any other purpose.
In addition, we may disclose any information, including personally identifiable information, we deem necessary, in our sole discretion, to comply with any applicable law, regulation, legal proceeding or governmental request.
We do not want you to receive unwanted e-mail from us. We try to make it easy to opt-out of any service you have asked to receive. If you sign-up to our e-mail newsletters we do not sell, exchange or give your e-mail address to a third party.
E-mail addresses are collected via the wn.com web site. Users have to physically opt-in to receive the wn.com newsletter and a verification e-mail is sent. wn.com is clearly and conspicuously named at the point of
collection.If you no longer wish to receive our newsletter and promotional communications, you may opt-out of receiving them by following the instructions included in each newsletter or communication or by e-mailing us at michaelw(at)wn.com
The security of your personal information is important to us. We follow generally accepted industry standards to protect the personal information submitted to us, both during registration and once we receive it. No method of transmission over the Internet, or method of electronic storage, is 100 percent secure, however. Therefore, though we strive to use commercially acceptable means to protect your personal information, we cannot guarantee its absolute security.
If we decide to change our e-mail practices, we will post those changes to this privacy statement, the homepage, and other places we think appropriate so that you are aware of what information we collect, how we use it, and under what circumstances, if any, we disclose it.
If we make material changes to our e-mail practices, we will notify you here, by e-mail, and by means of a notice on our home page.
The advertising banners and other forms of advertising appearing on this Web site are sometimes delivered to you, on our behalf, by a third party. In the course of serving advertisements to this site, the third party may place or recognize a unique cookie on your browser. For more information on cookies, you can visit www.cookiecentral.com.
As we continue to develop our business, we might sell certain aspects of our entities or assets. In such transactions, user information, including personally identifiable information, generally is one of the transferred business assets, and by submitting your personal information on Wn.com you agree that your data may be transferred to such parties in these circumstances.