
3 How does Google rank webpages?

3.1 A Short Answer

Now we turn to the other links you see on a search result webpage, not the ads or

sponsored search results, but the actual ranking of webpages by search engines

such as Google. We will see that Google solves a very big linear equation to rank

the webpages each time you search on www.google.com.

More important webpages should be ranked higher. But how do you quantify

how imporant a webpage is? Well, if there are many other important webpages

pointing towards a webpage A, probably A is important. This argument implic-

itly assumes two ideas:

• Webpages form a network, where a webpage is a node and a hyperlink is a

directed link in the network.

• We can turn the seemingly circular logic of “important webpages pointed to

you means you are important” into a set of equations that characterize the

equilibrium of this recursive definition of “importance”.

Suppose there are N webpages. Each webpage i has Oi number of outgoing

links and Ii number of incoming links. The “importance score” of each web-

page is πi. This importance score is evenly spread across all the outgoing links,

each of the outgoing neighbors receiving πi/Oi importance score. Therefore, each

node’s importance score can also be written as the sum of the importance scores

received from all the incoming neighbors. If this sum is indeed also πi, we have

consistency of the scores. But it is not clear if we can readily compute these

scores, or if they exist in the first place.

It turns out that, with a couple of modifications to the process above, there

is always a unique set of consistent scores, denoted as {π∗i }, and those scores

determine the ranking of the webpages: higher the score, higher is the webpage

ranked.

For example, consider a very small graph with just four webpages and six

hyperlinks, shown in Figure 3.1. This is a directed graph where each node is a

webpage and each link a hyperlink. A consistent set of importance scores turns

out to be: [0.125, 0.125, 0.375, 0.375]: webpages 3 and 4 are more important

than webpages 1 and 2. In this toy example, it so happens that webpages 3 and

4, linking each other, push both webpages’ rankings higher.



3.2 A Long Answer 37

1

2

3 4 Figure 3.1 A simple example of
importance score with 4 webpages and
6 hyperlinks. It is small with much
symmetry, leading to a simple
calculation of importance scores of the
nodes.

Intuitively, the scores make sense. First, by symmetry of the graph, webpages 1

and 2 should have the same importance score. We can view webpages 3 and 4 as if

they form one webpage first, a supernode 3+4. Since node 3+4 has two incoming

links, and each of nodes 1 and 2 only one incoming link, node 3+4 should have

higher importance score. Since node 3 points to node 4 and vice versa, these two

nodes’ importance scores mix into an equal division at equilibrium. This line of

reasoning qualitatively explains the actual scores we see.

But how do we calculate the exact scores? In this small example, it boils down

to two simple linear equations. Let the score for node 1 (and 2) be x, and that

for node 3 (and 4) be y. Looking at node 1’s incoming links. There is only one,

and that comes from node 4, which points to three nodes, so we know x = y/3.

Since 2x+ 2y = 1, we have x = 0.125 and y = 0.375.

Now how do we compute this set of consistent scores in a large, sparse, general

graph of hyperlink connectivity?

3.2 A Long Answer

In any search engine, there are two main activities going on continuously behind

the scene: (a) crawling the hyperlinked web space to get the webpage information,

(b) indexing this information into concise representations and storing the indices.

When you search in Google, it triggers a ranking procedure that takes into

account two main ingredients:

• How relevant is the content on each webpage, the relevance score.

• How important is the webpage, the importance score.

It is the composite score of these two factors that determine the ranking. We

focus on the importance score ranking, since that usually determines the order

of the top few webpages in any reasonably popular search, with its tremendous

impact on how people obtain information and how online businesses generate

traffic.

We will be constructing several related matrices: H, Ĥ, and G, step by step.

Eventually we will be computing an eigenvector of G as the importance score



38 How does Google rank webpages?

vector. Each matrix is N × N , where N is the number of webpages. These

are extremely large matrices, considering that there are about N = 40 billion

webpages out there in 2011.

The first matrix we define is H: its (i, j)th entry is 1/Oi if there’s a hyperlink

from webpage i to webpage j, and 0 otherwise. This matrix describes the network

topology: which webpage points to which webpage. It also evenly spread the

importance of each webpage among its outgoing neighbors, the webpages that it

points to.

Let π be an N × 1 column vector denoting the importance scores of the N

webpages. If we start with guessing that the consistent score vector is 1: simply

a vector of 1s as each webpage is equally important, we have an initial vector

π[0], where 0 denotes the 0th iteration, i.e., the initial condition.

Then keep multiplying πT (the vector flipped to be a row vector) on the

right by matrix H. You can write out this matrix multiplication, and see this is

spreading the importance score from the last iteration evenly among the outgoing

links, and re-calculating the importance score of each webpage in this iteration

by summing up the importance score from incoming links. For example, π1[2]

(for webpage 1 in the second iteration) can be expressed as the following sum of

importance scores from the first iteration:

π1[2] =
∑

j linked to 1

πj [1]

Oj
,

i.e., the π vector from the previous iteration inner-producting the first column

of H.

If we index the iterations by k, the update at each iteration is simply:

πT [k] = πT [k − 1]H. (3.1)

We followed the (visually a little clumsy) convention in this research field that

defined H such that the update is a mutiplication of row vector πT by H from

the right. We could also normalize the resulting π vector so that its entries add

up to 1.

Does the iterations in (3.1) converge, i.e., is there a k sufficient large such that

π[k] vector is arbitrarily close to π[k − 1] (no matter what is the initial guess

π[0])? If so, we have a way to compute consistent score vector as accurately as

we want.

But the answer is “not quite yet”. We need two adjustments to H.

First, some webpages do not point to any other webpages. These are “dangling

nodes” in the hyperlink graph . For example, in Figure 3.2, node 4 is a dangling

node, and its row is all 0s in the H matrix:

H =


0 0 0 1

1/3 0 1/3 1/3

1/3 1/3 0 1/3

0 0 0 0

 ,



3.2 A Long Answer 39

1

2

3

4
Figure 3.2 A network of
hyperlinked webpages with a
dangling node 4.

and there is no consistent scores. To see this, write out the system of linear

equations π = πH: 
1
3 (π2 + π3) = π1

1
3π3 = π2

1
3π2 = π3

π1 + 1
3 (π2 + π3) = π4

and solving them gives π1 = π2 = π3 = π4 = 0, which violates the normalization

requirement
∑
i πi = 1.

One solution is to replace each row of 0, like the last row in H above, by a

row of 1/N . Intuitively, this is saying that even if a webpage does not point to

any other webpage, we will force it to spread its importance score evenly among

all the webpages out there.

Mathematically, this amounts to adding a matrix of 1
N (w1T ) to H, where 1

is simply a vector of 1s, and w is a vector with the ith entry being 1 if webpage

i points to no other webpages (a dangling node) and 0 otherwise (not a dangling

node). This is an outer product between two N -dimensional vectors, which leads

to an N ×N matrix. For example, if N = 2 and w = [1 0]T , we have

1

2

(
1

0

)
(1 1) =

(
1/2 1/2

0 0

)
.

This new matrix we add to H is clearly simple. Even though it is big: N ×N , it

is actually the same vector w repeated N times. We call it a rank-1 matrix.

The resulting matrix:

Ĥ = H +
1

N
(w1T ),

has all the entries non-negative and each row adds up to 1. So we can think

of each row as a probabiliy vector, with the (i, j)th entry of Ĥ indicating the

probability that, if you are currently on webpage i, you will click on a link and

go to webpage j.

Well, the structure of the matrix says that you are equally likely to click on

any links shown on a webpage, and if there’s no link at all, you will be equally



40 How does Google rank webpages?

1

3

2

4
Figure 3.3 A network of
hyperlinked webpages with
multiple consistent score vectors.

likely to visit any other webpages. Such behavior is called a random walk on

graphs and can be studied as Markov chains in probability theory. Clearly

this does not model web browsing behavior exactly, but turns out it strikes a

pretty effective balance between simplicity of the model and usefulness of the

resulting webpage ranking. We will see a similar model for influence in social

networks in Chapter 8.

Second, there might be many consistent score vectors all compatible with a

given Ĥ. For example, for the graph in Figure 3.3, we have

H =


1/2 1/2 0 0

1/2 1/2 0 0

0 0 1/2 1/2

0 0 1/2 1/2

 .
Different choices of π[0] result in different π∗, which are all consistent. For ex-

ample, if π[0] = [1 0 0 0]T , then π∗ = [0.5 0.5 0 0]T . If π[0] = [0 0.3 0.7 0]T , then

π∗ = [0.15 0.15 0.35 0.35]T .

One solution to this problem is to add a little randomization to the iterative

procedure and the recursive definition of importance. Intuitively, we say there is

a chance of (1− θ)% that you will be jumping to some other random webpage,

without clicking on any of the links on the current webpage.

Mathematically, we add yet another matrix 1
N 11T , a matrix of 1s scaled by

1/N (and clearly a rank-1 matrix), to Ĥ. But this time a weighted sum, with a

weight θ ∈ [0, 1]. (1 − θ) describes how likely you will randomly jump to some

other webpage. The resulting matrix is called the Google matrix:

G = θĤ + (1− θ) 1

N
11T . (3.2)

Now we can show that no matter what is the initialization vector π[0], the

iterative procedure below:

πT [k] = πT [k − 1]G (3.3)



3.3 An Example 41

will converge as k → ∞, and converge to the unique vector π∗ representing the

consistent set of importance scores. Obviously, π∗ is the left eigenvector of G

corresponding to the eigenvalue of 1:

π∗T = π∗TG. (3.4)

One can then normalize π∗: take π∗i /
∑
j π
∗
j as the new value of π∗i , and rank the

entries in descending order, before outputting them on the search result webpage

in that order. The matrix G is designed such that there is a solution to 3.4 and

that 3.3 converges from any initialization.

Whichever way you compute π∗, taking (the normalized and ordered version

of) π∗ as the basis of ranking is called the pagerank algorithm. Compared

to DPC for wireless networks in Chapter 1, the matrix G in pagerank is much

larger, but we can afford a centralized computation.

3.3 An Example

Consider the network in Figure 3.4 with 8 nodes and 16 directional links, we

have

H =



0 1/2 1/2 0 0 0 0 0

1/2 0 0 0 1/2 0 0 0

0 1/2 0 0 0 0 0 1/2

0 0 1 0 0 0 0 0

0 0 0 1/2 0 0 0 1/2

0 0 0 1/2 1/2 0 0 0

0 0 0 1/2 0 1/2 0 0

1/3 0 0 1/3 0 0 1/3 0


.

Here Ĥ = H since there is no dangling node. Taking θ = 0.85, we have

G =



0.0188 0.4437 0.4437 0.0188 0.0188 0.0188 0.0188 0.0188

0.4437 0.0188 0.0188 0.0188 0.4437 0.0188 0.0188 0.0188

0.0188 0.4437 0.0188 0.0188 0.0188 0.0188 0.0188 0.4437

0.0188 0.0188 0.8688 0.0188 0.0188 0.0188 0.0188 0.0188

0.0188 0.0188 0.0188 0.4437 0.0188 0.0188 0.0188 0.4437

0.0188 0.0188 0.0188 0.4437 0.4437 0.0188 0.0188 0.0188

0.0188 0.0188 0.0188 0.4437 0.0188 0.4437 0.0188 0.0188

0.3021 0.0188 0.0188 0.3021 0.0188 0.0188 0.3021 0.0188


.

Initializing π[0] = [1/8 1/8 · · · 1/8]T (by convention, a vector is a column

vector, so when we write a vector horizontally on a line, we put transpose symbol



42 How does Google rank webpages?

4

1

2

3

5

6

7

8

Figure 3.4 An example of the pagerank algorithm with 8 webpages and 16 hyperlinks.
Webpage 3 is ranked the highest even though webpage 4 has the largest in-degree.

on top of the vector), iteration (3.3) gives

π[1] = [0.1073 0.1250 0.1781 0.2135 0.1250 0.0719 0.0542 0.1250]T

π[2] = [0.1073 0.1401 0.2459 0.1609 0.1024 0.0418 0.0542 0.1476]T

π[3] = [0.1201 0.1688 0.2011 0.1449 0.0960 0.0418 0.0606 0.1668]T

π[4] = [0.1378 0.1552 0.1929 0.1503 0.1083 0.0445 0.0660 0.1450]T

π[5] = [0.1258 0.1593 0.2051 0.1528 0.1036 0.0468 0.0598 0.1468]T

π[6] = [0.1280 0.1594 0.2021 0.1497 0.1063 0.0442 0.0603 0.1499]T

...

and π∗ = [0.1286 0.1590 0.2015 0.1507 0.1053 0.0447 0.0610 0.1492]T . This means

the ranked order of the webpages are: 3, 2, 4, 8, 1, 5, 7, 6.

The node with the largest in-degree, i.e., the number of links pointing to a

node, is node 4, which is not ranked the highest. This is in part because its

importance score is spread exclusively to node 3. As we will see again in Chapter

8, there are many more useful metrics measuring node importance than just the

degree, pagerank being one of them.

3.4 Advanced Material

3.4.1 Generalized pagerank and some basic properties

The Google matrix G can be generalized if the randomization ingredient is more

refined. Instead of the matrix 1
N 11T , we can add the matrix 1vT (again, the

outer product of two vectors), where v can be any probability distribution, with
1
N 1T being a special case of that. We can also generalize the dangling node



3.4 Advanced Material 43

treatment: instead of adding 1
Nw1T to H, where w is the indicator vector of

dangling nodes, we can add wvT .

Now, the Google update equation can be written in the long form (not us-

ing the shorthand notation G) as a function of the given webpage connectivity

matrix H, vector w indicating the dangling webpages, and the two algorithmic

parameters: scalar θ and vector v:

πTG = θπTH + πT (θw + (1− θ)1)vT . (3.5)

You should verify that the above equation is indeed the same as (3.3).

There are many viewpoints to further interpret (3.3) and connect it to matrix

theory, Markov chain theory, and linear systems theory. For example:

• π∗ is the left eigenvector corresponding to the dominant eigenvalue of a posi-

tive matrix.

• It also represents the stationary distribution of a Markov chain whose transi-

tion probabililities are in G.

• And it represents the equilibrium of an economic growth model according to

G (more on this viewpoint later in this section).

The major operational challenges of running the seemingly simple update (3.3)

are scale and speed : there are billions of webpages and Google needs to return

the results almost instantaneously.

Still, the power method (3.3) offers many numerical advantages compared to a

direct computation of the dominant eigenvector of G. First, (3.3) can be carried

out by multiplying vector by the sum of H and two rank-1 matrices. This is

numerically simple: H is very lage but also very sparse: each webpage usually

links to just a few other webpages, so almost all the entries in H are zero.

Multiplying by rank-1 matrices is also easy. Furthermore, at each iteration, we

only need to store the current π vector.

While we have not discussed the speed of convergence, it is clearly important

to speed up the computation of π∗. It turns out that the convergence speed in

this case is governed by the second largest eigenvalue λ2(G) of G, which can

be shown to be, approximately, θ. So this parameter θ controls the tradeoff be-

tween convergence speed and the relevance of hyperlink graph in computing the

importance scores: smaller θ (closer to 0) drives the convergence faster, but also

de-emphasizes the relevance of hyperlink graph structure more. This is hardly

surprising: if you view the webpage importance scores more like random objects,

it is easier to compute the equilibrium. Usually θ = 0.85 is believed to be a

pretty good choice. It gives convergence in about 50 iterations while still giv-

ing most of the weight to the actual hyperlink graph structure rather than the

randomization component in G.



44 How does Google rank webpages?

3.4.2 Pagerank as solution to a linear equation

Pagerank is similar to the distributed power control in Chapter 1. They both ap-

ply the power method to solve a system of linear equations. The solution to those

equations capture the right engineering configuration in the network, whether

that is the relative importance of webpages in a hyperlink graph, or the best

transmit power vector in a wireless interference environment. This conceptual

connection can be sharpened to an exact, formal parallelism below.

First, we can rewrite the characterization of π∗ as the solution to the following

linear equation (rather than as the dominant left eigenvector of matrix G (3.4),

the viewpoint we have been taking so far):

(I− θH)Tπ = v. (3.6)

Compare (3.6) with the characterization of optimal power vector in distributed

power control algorithm in Chapter 1:

(I−DF)p = v.

Of course, the vectors v are defined differently in these two cases: based on

webpage viewing behavior in pagerank and receiver noise in power control. But

we see a striking parallelism: the consistent score vector π, and the optimal

tansmit power vector p are both solutions to a linear equation with the following

structure: identity matrix minus a scaled version of the network connectivity

matrix.

In pagerank, the scaling is done by one scalar θ, and the network connectivity

is represented by the hyperlink matrix H. This makes sense since the key factor

here is the hyperlink connectivity pattern among the webpages.

In power control, the scaling is done by many scalars in the diagonal matrix

D: the target SIR for each user, and the network connectivity is represented by

the normalized channel gain matrix F. This makes sense since the key factor

here is the strength of interference channels.

To make the parallelism exact, we can also think of a generalization of Google

matrix G where each webpage has its own scaling factor θ.

The general theme for solving these two linear equations can be stated as

follows. Suppose you want to solve a system of linear equations Ax = b but

do not want to directly invert the square matrix A. You might be able to split

A = M−N, where M is invertible and its inverse M−1 can be much more easily

computed than A−1.

The following linear stationary iteration over times denoted by k:

x[k] = M−1Nx[k − 1] + M−1b

will converge to the desired solution:

lim
k→∞

x[k] = A−1b,

from any initialization x[0], provided that the largest eigenvalue of M−1N is



3.4 Advanced Material 45

smaller than 1. Both DPC and pagerank are special cases of this general algo-

rithm.

But we still need to show that (3.6) is indeed equivalent to (3.4): a π that

solves (3.6) also solves (3.4), and vice versa. First, starting with a π that solves

(3.6), we can easily show the following string of equalities:

1Tv = 1T (I− θH)Tπ

= 1Tπ − θ(H1)Tπ

= 1Tπ − θ(1−w)Tπ

= πT (θw + (1− θ)1),

where the first equality uses (3.6) and the third equality uses the fact that sum-

ming each row of H gives a vector of 1s (except those rows corresponding to

dangling webpages). The other two equalities are based on simple algebraic ma-

nipulations.

But 1Tv = 1 by design, so we know

πT (θw + (1− θ)1) = 1.

Now we can readily check that πTG, using its definition in (3.5) and the above

equation, equals θπTH + v.

Finally, using one more time the assumption that π satisfies (3.6), i.e., v =

(I− θH)Tπ, we complete the argument:

πTG = θπTH + (I− θH)Tπ = θπTH− θπTH + π = π.

Therefore, any π solving the linear equation (3.6) is also a dominant left eigen-

vector of G that solves (3.4). And vice versa can be similarly shown.

3.4.3 Scaling up and speeding up

It is not easy to adjust the parameters in pagerank computation. We discussed

the role of θ before, and we know that when θ is close to 1, pagerank results

become very sensitive to small changes in θ, since the importance matrix (I −
θĤ)−1 approach infinity.

There is also substantial research going into designing the right randomization

vector v. Even the entries of the H matrix: a web surfer likely will not pick all

of the hyperlinked webpages equally likely, and their actual behavior can be

recorded to adjust the entries of H.

But the biggest challenge to running pagerank is scale: how to scale up to

really large matrices? How to quickly compute and update the rankings? There

are both storage and computation challenges. And there are many interesting

approaches developed over the years, including the following five. The first one

is a computational acceleration method. The other four are approximations, two

in changing the notion of optimality and two in restructuing the graph of the

hyperlinked webpages.



46 How does Google rank webpages?

1. Decomposition of H. A standard trianglular decomposition gives H = DL

where D is a diagonal matrix with entries being 1 over the number of links

from webpage i, and L is a binary adjacency matrix. So only integers, instead

of real numbers, need to be stored to describe H. Now suppose there are N

webpages, and on average each webpage points to M webpages. N is huge:

tens of billions, and M is very small: often 10 or less. Instead of NM multi-

plications, this matrix decomposition reduces it to just M multiplications.

2. Relax the meaning of convergence. It is not the values of importance scores

that matter to most people, it is just the order of the webpages, especially

the top ones. So once the computation of pagerank is sure about the order,

there is no need to further improve the accuracy of computing π towards

convergence.

3. Differentiate among the webpages. Most webpages’ pageranks quickly con-

verge, and can be locked while the other webpages’ pageranks are refined.

This is an approximation that works particularly well when the pageranks

follow the power law that we’ll discuss later.

4. Leave the dangling nodes out. There are many dangling nodes in the billions

of webpages out there, and their behavior in the matrices and computations

involved are pretty similar. So they might be grouped together to speed up

the computation.

5. Aggregation of webpages. When many nodes are lumped together into a clus-

ter, then hierarchical computation of pageranks can be recursively computed,

first treating each cluster as one webpage, then distributing the pagerank of

that cluster among the actual webpages within that cluster. We will visit an

example of this important principle of building hierarcy to reduce computa-

tion (or communication) load in a homework problem.

3.4.4 Beyond the basic search

There is another player to the game of search: companies that specialize in

increasing a webpage’s pagerank, possibly pushing it to the top few search results,

or even to the very top spot. This obviously important industry is called SEO:

Search Engine Optimization. There are many proprietary techniques used by

SEO companies. Some techniques enhance content relevance scores, sometimes

by adding bogus tags in the html files. Other techniques increase the importance

score, sometimes by adding links pointing to the customers sites, and sometimes

by creating several truly important webpages and then attaching many other

webpages as its outgoing neighbors.

Google is also playing this game by detecting SEO techniques and then up-

dating its ranking algorithm so that the artificial help from SEO techniques is

minimized. For example, in early 2011, Google had a major update of its ranking

algorithm to counter the SEO effects.

There are also many important variants to the basic type of search we dis-

cussed. For example, personalized search based on user’s feedback on how she



3.4 Advanced Material 47

likes the usefulness of the top webpages in the search result webpage. Multimedia

search is another challenging area: searching through images, audios, and video

clips require very different ways of indexing, storing, and ranking the content

than text-based search.

Further reading

The pagerank algorithm is covered in almost every single book on network science

these days. Some particularly useful references are as follows.

The Google founders wrote the following seminal paper explaining pagerank

algorithm back in 1998:

[BP98] S. Brin and L. Page, “The anatomy of a large-scale hypertextual Web

search engine”, Computer Netowrks and ISDN Systems vol. 33, pp. 107-117,

1998.

The standard reference book devoted to pagerank is

[LM06] A. N. Langville and C. D. Meyer, Google’s Pagerank and Beyond,

Princeton University Press, 2006.

A well written website explaining pagerank is this one:

[R] C. Ridings, “Pagerank explained: Everything you’ve always wanted to

know about Pagerank”, http://www.rankwrite.com.

Dealing with non-negative matrices like the three we saw in this chapter is

well documented, e.g., in the following textbook:

[BP79] A. Berman and R. J. Plemmons, Nonnegative Matrices in the Mathe-

matical Sciences, Acadmeic Press, 1979.

Computational issues in matrix multiplication is treated in textbooks like this

one:

[GV96] G. Golub and C. F. van Van Loan, Matrix Computations, 3rd Ed., The

Johns Hopkins University Press, 1996.


